
Publication Series of the John von Neumann Institute for Computing (NIC)
NIC Series Volume 27

John von Neumann Institute for Computing (NIC)

Jörg Striegnitz and Kei Davis (Eds.)

Joint proceedings of the Workshops on
Multiparadigm Programming with
Object-Oriented Languages
(MPOOL’03)
Declarative Programming in the
Context of Object-Oriented
Languages (DP-COOL’03)

organized by

John von Neumann Institute for Computing

in cooperation with the

Los Alamos National Laboratory, New Mexico, USA

NIC Series Volume 27

ISBN 3-00-016005-1

Die Deutsche Bibliothek – CIP-Cataloguing-in-Publication-Data
A catalogue record for this publication is available from Die
Deutsche Bibliothek.

Publisher: NIC-Directors
Distributor: NIC-Secretariat

Research Centre Jülich
52425 Jülich
Germany
Internet: www.fz-juelich.de/nic

Printer: Graphische Betriebe, Forschungszentrum Jülich

c© 2005 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work
for personal or classroom use is granted provided that the copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise requires prior specific permission by the publisher
mentioned above.

NIC Series Volume 27
ISBN 3-00-016005-1

Table of Contents

A Static C++ Object-Oriented Programming (SCOOP) ParadigmMixing
Benefits of Traditional OOP and Generic Programming. 1
Nicolas Burrus, Alexandre Duret-Lutz, Thierry Géraud, David Lesage,
Raphäel Poss

Object-Model Independence via Code Implants. 35
Michał Cierniak, Neal Glew, Spyridon Triantafyllis, Marsha Eng, Brian

Lewis, James Stichnoth

The ConS/* Programming Languages. 49
Matthias M. Ḧolzl

Functional versus OO Programming: Conflict Without a Cause. 63
DeLesley Hutchins

An Analysis of Constrained Polymorphism for Generic Programming 87
Jaakko J̈arvi, Andrew Lumsdaine, Jeremy Siek, Jeremiah Willcock

Top-Down Decomposition in C++. 109
Asher Sterkin, Avraham Poupko

SOUL and Smalltalk - Just Married. 125
Kris Gybels

Unifying Tables, Objects and Documents. 139
Erik Meijer, Wolfram Schulte, Gavin Bierman

Syntax sugar for FC++: lambda, infix, monads, and more. 157
Brian McNamara and Yannis Smaragdakis

Importing alternative paradigms into modern object-oriented languages.. 185
Andrey V. Stolyarov

Program Templates:. 209
Francis Maes

JSetL: Declarative Programming in Java with Sets. 229
Elisabetta Poleo and Gianfranco Rossi

SML2Java: A Source to Source Translator. 251
Justin Koser, Haakon Larsen, Jeffrey A. Vaughan

Constraint Imperative Programming with C++. 263
Olaf Krzikalla

i

Patterns in Datatype-Generic Programming. 277
Jeremy Gibbons

ii

A Static C++ Object-Oriented Programming (SCOOP)
Paradigm Mixing Benefits of Traditional OOP and

Generic Programming

Nicolas Burrus, Alexandre Duret-Lutz, Thierry Géraud, David Lesage, and Raphaël
Poss

EPITA Research and Development Laboratory
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre, France

firstname.lastname@lrde.epita.fr

Abstract. Object-oriented and generic programming are both supported in C++.
OOP provides high expressiveness whereas GP leads to more efficient programs
by avoiding dynamic typing. This paper presents SCOOP, a newparadigm which
enables both classical OO design and high performance in C++by mixing OOP
and GP. We show how classical and advanced OO features such asvirtual meth-
ods, multiple inheritance, argument covariance, virtual types and multimethods
can be implemented in a fully statically typed model, hence without run-time
overhead.

1 Introduction

In the context of writing libraries dedicated to scientific numerical computing, expres-
siveness, reusability and efficiency are highly valuable. Algorithms are turned into soft-
ware components that handle mathematical abstractions while these abstractions are
mapped into types within programs.

The object-oriented programming (OOP) paradigm offers a solution to express
reusable algorithms and abstractions through abstract data types and inheritance. How-
ever, as studied by Driesen and Hölzle [18], manipulating abstractions usually results
in a run-time overhead. We cannot afford this loss of performance since efficiency is a
crucial issue in scientific computing.

To both reach a high level of expressiveness and reusabilityin the design of object-
oriented scientific libraries and keep an effective run-time efficiency for their routines,
we have to overcome the problem of “abstractions being inefficient”. To cope with that,
one can imagine different strategies.

A first idea is to find an existing language that meets our requirements, i.e., a lan-
guage able to handle abstractions within programs without any penalty at execution
time. This language has to be either well-known or simple enough to ensure that a sci-
entist will not be reluctant to use our library. Unfortunately we do not feel satisfied with
existing languages; for instance LOOM and PolyTOIL by Bruceet al. [11, 9] have the
precise flavor that we expect but, as prototypes, they do not feature all what a complete
language can offer.

1

A second approach, chosen by Baumgartner and Russo [6] and Bracha et al. [8]
respectively for C++ and Java, is to extend an existing expressive language by adding
ad hoc features making programs more efficient at run-time. Yet, this approach requires
a too great amount of work without any guarantee that extensions will be adopted by the
language community and by compiler vendors. To overcome this problem, an alternate
approach is to propose a front-end to translate an extended language, more expressive,
into its corresponding primary language, efficient, such asStroustrup [48] did with his
erstwhile version of the C++ language. This approach has been made easier than in the
past thanks to recently available tools dedicated to program translation, for instance Xt
[56]. However, we have not chosen this way since we are not experimented enough with
this field.

Another strategy is to provide a compiler that produces efficient source codes or
binaries from programs written in an expressive language. For that, several solutions
have been developed that belong to the fields of static analysis and partial evaluation,
as described by Chambers et al. [14], Schultz [41], Veldhuizen and Lumsdaine [55]. In
particular, how to avoid the overhead of polymorphic methodcalls is studied by Aigner
and Hölzle [2], Bacon and Sweeney [4] for C++ and by Zendra etal. [57] for Eiffel.
However, most of these solutions remain prototypes and are not implemented in well-
spread compilers.

Last, we can take an existing object-oriented language and try to bend it to make
some constructs more efficient. That was for instance the case of the expression tem-
plates construct defined by Veldhuizen [53] in C++, later brought to Ada by Duret-
Lutz [19], and of mixin-based programming by Smaragdakis and Batory [43] in C++.
These solutions belong to the field of thegeneric programming(GP) paradigm, as
described by Jazayeri et al. [26]. This programming style aims at implementing al-
gorithms as general so reusable as possible without sacrificing efficiency obtained by
parameterization—related to thetemplate keyword in C++ and to thegeneric key-
word in Ada and Eiffel. However, from our experience in developing a scientific library,
we notice several major drawbacks of GP that seriously reduce expressiveness and
affect user-friendliness, whereas these drawbacks do not exist with “classical” OOP.
A key point of this paper is that we donot subscribe to “traditional” GP because of
these drawbacks. Said shortly, they have their origin in theunbounded structural typ-
ing of parameterization in C++ which prevents from having strongly typed signatures
for functions or methods. Consequently, type checking at compile-time is awkward and
overloading is extremely restricted. Justifications of ourposition and details about GP
limitations are given later on in this paper.

Actually, we want to keep the best of both OOP and GP paradigms—inheritance,
overloading, overriding, and efficiency—without resorting to a new language or new
tools—translators, compilers, or optimizers. The advent of the C++ Standard Template
Library, mostly inspired by the work of Stepanov et al. [46],is one the first serious well-
known artifact of GP. Following that example a lot of scientific computing C++ libraries
arose during the past few years(they are referenced by oonumerics [38]), one of the most
predominant being Boost [7]. Meanwhile, due to the numerousfeatures of C++, many
related GP techniques appeared and are described in the books by Czarnecki and Eise-
necker [17], Alexandrescu [3], Vandevoorde and Josuttis [52]. Moreover, Striegnitz and

2

Smith [47], Järvi and Powell [25], Smaragdakis and McNamara [44] have shown that
some features offered by a non-object-oriented paradigm, namely the functional one,
can be supported by the native C++ language. Knowing these C++ programming tech-
niques, we then thought that this language was able to support an OOP-like paradigm
without compromising efficiency. The present paper describes this paradigm, namely a
proposal for “Static C++ Object-Oriented Programming”: SCOOP.

This paper is composed of three parts. Section 2 discusses the OOP and GP para-
digms, their limitations, existing solutions to overcome some of these limitations, and
finally what we expect from SCOOP. Section 3 shows how SCOOP isimplemented.
Finally some technical details and extra features have beenmoved into appendices.

2 OOP, GP, and SCOOP

A scientific library offers data structuresandalgorithms. This procedural point of view
is now consensual [34] although it seems to go against OOP. Actually, an algorithm is
intrinsically a general entity since it deals with abstractions. To get the highest decou-
pling as possible between data and algorithms, a solution adopted by the C++ Standard
Library and many others is to map algorithms into functions.At the same time, data
structures are mapped into classes where most of the methodsare nothing but the means
to access data. Last, providing reusable algorithms is an important objective of libraries
so we have to focus on algorithms. It is then easier to consider that algorithms and all
other entities are functions (such as in functional languages) to discuss typing issues.
For all these reasons, we therefore adopt in this section a function-oriented approach of
algorithms.

2.1 About Polymorphisms

A function is polymorphic when its operands can have more than one type, either be-
cause there are several definitions of the function, or because its definition allows some
freedom in the input types. The right function to call has to be chosen depending on the
context. Cardelli and Wegner [13] outline four different kinds of polymorphism.

In inclusion polymorphism, a function can work on any type in atype class. Type
classes are named sets of types that follow a uniform interface. Functional languages
like Haskell allow programmers to define type classes explicitly, but this polymorphism
is also at the heart of OO languages. In C++, inclusion polymorphism is achieved via
two mechanisms: subclassing and overriding of virtual functions.

Subclassing is used to define sets of types. Theclass (or struct) keyword is
used to define types that can be partially ordered through a hierarchy: i.e., an inclusion
relation1. A function which expects a pointer or reference to a classA will accept an
instance ofA or any subclass ofA. It can be noted that C++’s typing rules make no

1 Inclusion polymorphism is usually based on a subtyping relation, but we do not enter the
debate about “subclassing v. subtyping” [15].

3

difference between a pointer to an object whose type is exactly A and a pointer to an
object whose type belongs to the type class ofA2.

Overriding of virtual functions allows types whose operations have different im-
plementations to share the same interface. This way, an operation can be implemented
differently in a subclass ofA than it is inA. Inclusion polymorphism is sometime called
operation polymorphismfor this reason.

These two aspects of inclusion polymorphism are hardly dissociable: it would make
no sense to support overriding of virtual functions withoutsubclassing, and subclassing
would be nearly useless if all subclasses had to share the same implementation.

In parametric polymorphism, the type of the function is represented using at least
one generic type variable. Parametric polymorphism reallycorresponds to ML generic
functions, which are compiled only once, even if they are used with different types.
Cardelli and Wegner states that Ada’s generic functions arenot to be considered as
parametric polymorphism because they have to beinstantiated explicitlyeach time they
are used with a different type. They see Ada’s generic functions as a way to produce
several monomorphic functions by macro expansion. It wouldtherefore be legitimate
to wonder whether C++’s function templates achieve parametric polymorphism. We
claim it does, because unlike Ada’s generics, C++’s templates are instantiatedimplicitly.
In effect, it does not matter that C++ instantiates a function for each type while ML
compiles only one function, because this is transparent to the user and can be regarded
as an implementation detail3.

These two kinds of polymorphism are calleduniversal. A nice property is that they
are open-ended: it is always possible to introduce new typesand to use them with ex-
isting functions. Two other kinds of polymorphism do not share this property. Cardelli
and Wegner call themad-hoc.

Overloading corresponds to the case where several functions with different types
have the same name.

Coercion polymorphism comes from implicit conversions of arguments. These
conversions allow a monomorphic function to appear to be polymorphic.

All these polymorphisms coexist in C++, although we will discuss some notable in-
compatibilities in section 2.3. Furthermore, apart from virtual functions, the resolution
of a polymorphic function call (i.e., choosing the right definition to use) is performed
at compile-time.

2.2 About the Duality of OOP and GP

Duality of OOP and GP has been widely discussed since Meyer [32]. So we just recall
here the aspects of this duality that are related to our problem.

Let us consider a simple functionfoo that has to run on different image types. In
traditional OOP, the image abstraction is represented by anabstract class,Image , while

2 In Ada, one can writeaccess A or access A’Class to distinguish a pointer to an in-
stance ofA from a pointer to an instance of any subclass ofA.

3 This implementation detail has an advantage, though: it allows specialized instantiations (i.e.,
template specializations). To establish a rough parallel with inclusion polymorphism, template
specializations are to templates what method overriding isto subclassing. They allow to change
the implementation for some types.

4

a concrete image type (for instanceImage2D) for a particular kind of 2D images, is
a concrete subclass of the former. The same goes for the notion of “point” that gives
rise to a similar family of classes:Point , which is abstract, andPoint2D , a concrete
subclass ofPoint . That leads to the following code4:

struct Image{
virtual void set (const Point& p, int val) = 0;

};

struct Image2D :public Image{
virtual void set (const Point& p, int val) { /∗ impl ∗/ }

};

void foo(Image& input,const Point& p) {
// does something like :
input . set (p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

foo is a polymorphic function thanks toinclusion through class inheritance. The
call input.set(p, 51) results in a run-time dispatch mechanism which binds this
call to the proper implementation, namelyImage2D::set . In the equivalent GP code,
there is no need for inheritance.

struct Image2D{
void set (const Point2D& p, int val) { /∗ impl ∗/ }

};

template <classIMAGE, classPOINT>

void foo(IMAGE& input, constPOINT& p) {
// does something like :
input . set (p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

foo is now polymorphic throughparameterization. At compile-time, a particular
version offoo is instantiated,foo<Image2D, Point2d> , dedicated to the particular
call to foo in main . The basic idea of GP is that all exact types are known at compile-
time. Consequently, functions are specialized by the compiler; moreover, every function
call can be inlined. This kind of programming thus leads to efficient executable codes.

4 Please note that, for simplification purpose, we usestruct instead ofclass and that we do
not show the source code corresponding to thePoint hierarchy.

5

The table below briefly compares different aspects of OOP andGP.

notion OOP GP

typing named typing through class names structural
so explicit in class definitions so only described in documentation

abstraction abstract class formal parameter
(e.g., image) (e.g.,Image) (e.g.,IMAGE)
inheritance is the way to handle abstractions is only a way to factorize code

method no-variant —
(set) (Image::set(Point, int) —

Image2D::set(Point, int)) —
algorithm a single code at program-time a single meta-code at program-time

(foo) (foo) (template<..> foo)
and a unique version at compile-time and several versions at compile-time

(foo) (foo<Image2D,Point2D> , etc.)
efficiency poor high

From the C++ compiler typing point of view, our OOP code can betranslated into:
type Image ={ set : Point→ Int→ Void }
foo : Image→ Point→ Void

foo is restricted to objects whose types are respectively subclasses ofImage and
Point . For our GP code, things are very different. First, the imageabstraction is not
explicitly defined in code; it is thus unknown by the compiler. Second, both formal pa-
rameters offoo are anonymous. We then rename them respectively “I” and “P” in the
lines below and we get:

∀ I, ∀ P, foo : I→ P→ Void
Finally, if these two pieces of code seem at a first sight equivalent, they do not

correspond to the same typing behavior of the C++ language. Thus, they are treated dif-
ferently by the compiler and have different advantages and drawbacks. The programmer
then faces the duality of OOP and GP and has to determinate which paradigm is best
suited to her requirements.

During the last few years, the duality between OOP and GP has given rise to several
studies.

Different authors have worked on the translation of some design patterns [22] into
GP; let us mention Géraud et al. [23], Langer [27], Duret-Lutz et al. [20], Alexandrescu
[3], Régis-Gianas and Poss [39].

Another example concerns thevirtual typesconstruct, which belongs to the OOP
world even if very few OO languages feature it. This construct has been proposed as an
extension of the Java language by Thorup [50] and a debate about the translation and
equivalence of this construct in the GP world has followed [10, 51, 40].

Since the notion of virtual type is of high importance in the following of this paper,
let us give a more elaborate version of our previous example.In an augmented C++
language, we would like to express that both families of image and point classes are
related. To that aim, we could write:

struct Image{
virtual typedef Point pointtype = 0;
virtual void set (const point type & p, int val) = 0;

};

struct Image2D :public Image{

6

virtual typedef Point2D pointtype ;
virtual void set (const point type & p, int val) { /∗ impl ∗/ }

};

point_type is declared in theImage class to be an “abstract type alias”
(virtual typedef .. point_type = 0;) with a constraint: in subclasses of
Image , this type should be a subclass ofPoint . In the concrete classImage2D , the
aliaspoint_type is defined to bePoint2D . Actually, the behavior of such a construct
is similar to the one of virtual member functions: usingpoint_type on an image ob-
ject depends on the exact type of the object. A sample use is depicted hereafter:

Image∗ ima =new Image2D();
// ...
Point∗ p = new (ima−>point type)();

At run-time, the particular exact type ofp is Point2D since the exact type ofima is
Image2D .

An about equivalent GP code in also an augmented C++ is as follows:

struct Image2D{
typedef Point2D pointtype ;
void set (const point type & p, int val) { /∗ impl ∗/ }

};

template <class I>
where I {

typedef point type ;
void set (const point type &, int);

}
void foo(I& input , const typenameI:: point type & p) {

// does something like :
input . set (p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

Such as in the original GP code, inheritance is not used and typing is fully structural.
On the other hand, awhere clausehas been inserted infoo ’s signature to precise the
nature of acceptable type values forI . This construct, which has its origin in CLU [29],
can be found in Theta [28], and has also been proposed as an extension of the Java
language [35]. From the compiler point of view,foo ’s type is much more precise than
in the traditional GP code. Finally, in both C++ OOP augmented with virtual types and
C++ GP augmented with where clauses, we get stronger expressiveness.

2.3 OOP and GP Limitations in C++

Object-Oriented Programming relies principally on the inclusion polymorphism. Its
main drawback lies in the indirections necessary to run-time resolution of virtual meth-

7

ods. This run-time penalty is undesirable in highly computational code; we measured
that getting rid of virtual methods could speed up an algorithm by a factor of 3 [24].

This paradigm implies a loss of typing: as soon as an object isseen as one of its base
classes, the compiler looses some information. This limitsoptimization opportunities
for the compiler, but also type expressiveness for the developer. For instance, once the
exact type of the object has been lost, type deduction (T::deducted_type) is not
possible. This last point can be alleviated by the use of virtual types [51], which are not
supported by C++.

The example of the previous section also expresses the need for covariance:
foo calls the methodset whose expected behavior is covariant.foo precisely calls
Image2D::set(Point2D, int) in the GP version, whereas the call in the OOP ver-
sion corresponds toImage::set(Point, int) .

Generic Programing on the other hand relies on parametric polymorphism and
proscribes virtual functions, hence inclusion polymorphism. The key rule is that the
exact type of each object has to be known at compile-time. This allows the compiler to
perform many optimizations. We can distinguish three kindsof issues in this paradigm:

– the rejection of operations that cannot be typed statically,
– the closed world assumption,
– the lack of template constraints.

The first issues stem from the will to remain statically typed. Virtual functions are
banished, and this is akin to rejecting inclusion polymorphism. Furthermore there is no
way to declare an heterogeneous list and to update it at run-time, or, more precisely to
dynamically replace an attribute by an object of a compatible subtype. These operations
cannot be statically typed, there can be no way around this.

The closed world assumption refers to the fact that C++’s templates do not support
separate compilation. Indeed, in a project that uses parametric polymorphism exclu-
sively it prevents separate compilation, because the compiler must always know all type
definitions. Such monolithic compilation leads to longer build times but gives the com-
piler more optimization opportunities. The C++ standard [1] supports separate compi-
lation of templates via theexport keyword, but this feature has not been implemented
in mainstream C++ compilers yet.

The remaining issues come from bad interactions between parametric polymor-
phism and other polymorphisms in C++. For instance, becausetemplate arguments are
unconstrained, one cannot easily overload function templates. Figure 1 illustrates this
problem. When using inclusion polymorphism (left), the compiler knows how to re-
solve the overloading: ifarg is an instance of a subclass ofA1, resp.A2, it should be
used with the first resp. second definition offoo() . We therefore have two implemen-
tations offoo() handling two different sets of types. These two sets are not closed (it is
always possible to add new subclasses), but they are constrained. Arbitrary types cannot
be added unless they are subtypes ofA1 or A2. This constraint, which distinguishes the
two sets of types, allows the compiler to resolve the overloading.

In generic programming, such an overloading could not be achieved, because of
the lack of constraints on template parameters. The middle column on Figure 1 shows
a straightforward translation of the previous example intoparametric polymorphism.

8

void foo(A1& arg)
{

arg .m1()
}

void foo(A2& arg)
{

arg .m2()
}

template<classA1>

void foo(A1& arg)
{

arg .m1()
}

template<classA2>

void foo(A2& arg) // illegal
{

arg .m2()
}

template<classA1>

void foo(A1& arg)
{

arg .m1()
}

template<>

void foo<A2>(A2& arg)
{

arg .m2()
}

Fig. 1. Overloading can be mixed with inclusion polymorphism (left), but will not work with
unconstrained parametric polymorphism (middle and right).

Because template parameters cannot be constrained, the function’s arguments have to
be generalizedfor any typeA, andfor any typeB. Of course, the resulting piece of code
is not legal in C++ because both functions have the same type.A valid possibility (on
the right of Figure 1), is to write a definition offoo for any typeA1, and thenspecialize
this definition for typeA2. However, this specialization will only work for one type
(A2), and would have to be repeated for each other type that must be handled this way.

Solving overloading is not the only reason to constrain template arguments, it can
also help catching errors. Libraries like STL, which rely ongeneric programming, docu-
ment the requirements that type arguments must satisfy. These constraints are gathered
into conceptssuch asforward iterator or associative container[46]. However, these
concepts appear only in the documentation, not in typing. Although some techniques
have been devised and implemented in SGI’s STL to check concepts at compile-time,
the typing of the library still allows a function expecting aforward iteratorto be instan-
tiated with anassociative container. Even if the compilation will fail, this technique
will not prevent the compiler from instantiating the function, leading to cryptic error
messages, because some function part of theforward iterator requirements will not be
found in the passed associative container. Could theforward iterator have been ex-
pressed as a constraint on the argument type, the error wouldhave been caught at the
right time i.e. during the attempt to instantiate the function template, not after the in-
stantiation.

2.4 Existing Clues

As just mentioned, some people have already devised ways to check constraints. Siek
and Lumsdaine [42] and McNamara and Smaragdakis [31] present a technique to check
template arguments. This technique relies on a short checking code inserted at the top
of a function template. This code fails to compile if an argument does not satisfy its
requirements and is turned into a no-op otherwise. This technique is an effective means
of performing structural checks on template arguments to catch errors earlier. However,
constraints are justchecked, they are notexpressedas part of function types. In particu-
lar, overloading issues discussed in the previous section are not solved. Overloading has

9

to be solved by the compilerbeforetemplate instantiation, so any technique that works
after template instantiation does not help.

Ways toexpressconstraints by subtyping exist in Eiffel [33] and has been proposed
as a Java extension by Bracha et al. [8]. Figure 2 shows how a similar C++ extension
could be applied to the example from Section 2.2.

concept image{
typedef point type ;
void set (const point type & p, int val);

};

struct Image2D models image{
typedef Point2D pointtype ;
void set (const point type & p, int val) { /∗ impl ∗/ }

};

template <class I models image>
void foo(I& input , const typenameI:: point type & p) {

// does something with:
input . set (p, 51);

}

int main() {
Image2D ima; Point2D p;
foo(ima, p);

}

Fig. 2. Extending C++ to support concept constraints

We have introduced an explicit construct through the keyword concept to express
the definition ofimage , the structural type of images. This construct is also similar to
the notion of signatures proposed by Baumgartner and Russo [6] as a C++ extension.
Having explicitly a definition ofimage constraints the formal parameterI in foo ’s
type.

Some interesting constructions used to constrain parametric polymorphism or to
emulate dynamic dispatch statically rely on a idiom known astheBarton and Nackman
trick [5] also known as theCuriously Recurring Template Pattern[16]. The idea is that
a super class is parameterized by its immediate subclass (Figure 3), so that it can define
methods for this subclass.

For instance the Barton and Nackman trick has been used by Furnish [21] to
constrain parametric polymorphism and simplify the Expression Template technique
of Veldhuizen [53].

10

template <classT>

struct super
{

void foo(const T& arg)
{

// ...
}

};

struct infer : public super<infer>
{

// ...
};

Fig. 3. The Barton and Nackman trick

2.5 Objectives of SCOOP

Our objective in this paper is to show how inclusion polymorphism can be almost com-
pletely emulated using parametric polymorphism in C++ while preserving most OOP
features. Let us define our requirements.

Class Hierarchies.Developers should express (static) class hierarchies justlike in the
traditional (dynamic) C++ OOP paradigm. They can draw UML static diagrams to de-
pict inheritance relationships between classes of their programs. When they have a class
in OO, sayBar , its translation in SCOOP is a single class template:Bar 5.

Named Typing.When a scientific practitioner designs a software library, it is convenient
to reproduce in programs the names of the different abstractions of the application do-
main. Following this idea, there is an effective benefit to make explicit the relationships
between concrete classes and their corresponding abstractions to get a more readable
class taxonomy. We thus prefer named typing over structuraltyping for SCOOP.

Multiple Inheritance.In the object model of C++, a class can inherits of several classes
at the same time. There is no reason to give up this feature in SCOOP.

Overriding. With C++ inheritance come the notions of pure virtual functions, of vir-
tual functions, and of overriding functions in subclasses.We want to reproduce their
behavior in SCOOP but without their associated overhead.

Virtual Types. This convenient tool (see sections 2.2 and 2.3) allows to express that
a class encloses polymorphictypedefs. Furthermore, it allows to get covariance for
member functions. Even if virtual types does not exist in primary C++, we want to
express them in SCOOP.

Method Covariance.It seems reasonable to support method covariance in SCOOP, and
particularly binary methods. Since our context is static typing with parametric polymor-
phism, the C++ compiler may ensure that we do not get typing problems eventually.

5 We are aware of a solution to encode static class hierarchiesthat is different to the one pre-
sented later on in this paper. However, one drawback of this alternate solution is to duplicate
every class: having a classBar in OOP gives rise to a couple of classes in the static hierarchy.
To our opinion, this is both counter-intuitive and tedious.

11

Overloading. In the context of scientific computing, having overloading is crucial. For
instance, we expect from the operator “+” to be an over-overloaded function in an alge-
braic library. Moreover, overloading helps to handle a situation that often arises in sci-
entific libraries: some algorithms have a general implementation but also have different
more efficient implementation for particular families of objects. We want to ensure in
SCOOP that overloading is as simply manageable as in OOP.

Multimethods.Algorithms are often functions with several input or arguments. Since
the source code of an algorithm can also vary with the nature and number of its input,
we need multimethods.

Parameter Bounds.Routines of scientific libraries have to be mapped into strongly
typed functions. First, this requirement results in a comfort for the users since it pre-
vents them from writing error-prone programs. Second, thisrequirement is helpful to
disambiguate both overloading and multimethod dispatch.

3 Description of SCOOP

3.1 Static Hierarchies

Static hierarchies are meta-hierarchies that result in real hierarchies after various sta-
tic computations like parameter valuations. With them, we are able to know all types
statically hence avoiding the overhead of virtual method resolution. Basically, the core
of our static hierarchy system is a generalization of the Barton & Nackman trick [5].
Veldhuizen [54] had already discussed some extensions of this technique and assumed
the possibility to apply it to hierarchies with several levels. We effectively managed to
generalize these techniques to entire, multiple-level hierarchies.

Our hierarchy system is illustrated in Figure 4. This figure gives an example of a
meta-hierarchy, as designed by the developer, and describes the different final hierar-
chies obtained, according to the instantiated class. The corresponding C++ code is given
in Figure 5. This kind of hierarchy gives us the possibility to define abstract classes
(classA), concrete extensible classes (classB), and final classes (classC). Non final
classes6 are parameterized byEXACTthat basically represents the type of the object
effectively instantiated. Additionally, any class hierarchy must inherit from a special
base class calledAny. This class factorizes some general mechanisms whose role are
detailed later.

Instantiations of abstract classes are prevented by protecting their constructors. The
interfaces and the dispatch mechanisms they provide are detailed in Section 3.2.

Extensible concrete classes can be instantiated and extended by subclassing. Since
the type of the object effectively instantiated must be propagated through the hierarchy,
this kind of class has a double behavior. When such a classB is extended and is not the
instantiated class, it must propagate itsEXACTtype parameter to its base classes. When

6 Non final classes are abstract classes or concrete classes that can be extended. Non parameter-
ized classes are necessarily final in our paradigm.

12

Any
EXACT

A
EXACT

Meta-hierarchy

Instantiation of B Instantiation of C

C

B
EXACT

Any< B<Itself> >

A< B<Itself> >

B<Itself>

Any<C>

A<C>

C

B<C>

Fig. 4. Static hierarchy unfolding sample
A single meta-hierarchy generates one class hierarchy per instantiable class. Our model can

instantiate both leaf classes and intermediate ones. In this example, onlyB andCare
instantiable, so only the above two hierarchies can be instantiated.

Non final classes are parameterized byEXACTwhich represents the type of the object
effectively instantiated. The typeItself is used as a terminator when instantiating extensible

concrete classes.

13

// Hierarchy apparel

struct Itself
{ };

// find exact utility macro
#define find exact (Type) // ...

template <classEXACT>

class Any
{

// ...
};

// Hierarchy

// purely abstract class
template <classEXACT>

class A: public Any<EXACT>

{
// ...

};

// extensible concrete class
template <classEXACT = Itself>
class B: public A<find exact(B)>
{

// ...
};

// final class
class C: public B<C>

{
// ...

};

Fig. 5. Static hierarchy sample: C++ code
find_exact(Type) mechanism is detailed in Appendix A.1.

14

it is effectively instantiated, further subclassing is prevented by using theItself termi-
nator asEXACTparameter. Then,B cannot propagate itsEXACTparameter directly and
should propagate its own type,B<Itself> . To determine the effectiveEXACTparame-
ter to propagate, we use a meta-program calledfind_exact(Type) whose principle
and C++ implementation are detailed in Appendix A.1. One should also notice that
Itself is the default value for theEXACTparameter of extensible concrete classes.
Thus,B sample class can be instantiated using theB<> syntax.

Itself classes cannot be extended by subclassing. Consequently, they do not need
any EXACTparameterization since they are inevitably the instantiated type when they
are part of the effective hierarchy. Then, they only have to propagate their own types to
their parents.

Within our system, any static hierarchy involvingn concrete classes can be unfolded
into n distinct hierarchies, withn distinct base classes. Effectively, concrete classes
instantiated from the same meta-hierarchy will have different base classes, so that some
dynamic mechanisms are made impossible (see Section 2.3).

3.2 Abstract Classes and Interfaces

In OOP, abstraction comes from the ability to express class interfaces without imple-
mentation. Our model keeps the idea that C++ interfaces are represented by abstract
classes. Abstract classes declare all the services their subclasses should provide. The
compliance to a particular interface is then naturally ensured by the inheritance from
the corresponding abstract class.

Instead of declaring pure virtual member functions, abstract classes define abstract
member functions as dispatches to their actual implementation. This manual dispatch is
made possible by theexact() accessor provided by theAny class. Basically,exact()

downcasts the object to itsEXACT type made available by the static hierarchy sys-
tem presented in Section 3.1. In practice,exact() can be implemented with a simple
static_cast construct, but this basic mechanism forbids virtual inheritance7. Within
our paradigm, an indirect consequence is that multiple inheritance implies inevitably
virtual inheritance sinceAny is a utility base class common to all classes. Advanced
techniques, making virtual and thus multiple inheritance possible, are detailed in Ap-
pendix A.2.

An example of an abstract class with a dispatched method is given in Figure 6. The
corresponding C++ code can be deduced naturally from this UML diagram. In the ab-
stract classA, the methodm(...) calls its implementationm_impl(...) . Method’s
interface and implementation are explicitly distinguished by using different names.
This prevents recursive calls of the interface if the implementation is not defined. Of
course, overriding the implementation is permitted. Thanks to theexact() downcast,
m_impl(...) is called on the type of the object effectively instantiated, which is nec-
essarily a subclass ofA. Thus, overriding rules are respected. Since theEXACTtype is
known statically, this kind of dispatch is entirely performed at compile-time and does
not require the use of virtual symbol tables. Method dispatches can be inlined so that
they finally come with no run-time overhead.

7 Virtual inheritance occurs in diamond-shape hierarchies.

15

A
EXACT

+ m(...): void

Any
EXACT

+ exact(): EXACT

+ m_impl(...): void

B

return static_cast<EXACT>(*this);

return this->exact().m_impl(...);

Fig. 6. Abstract class and dispatched abstract method sample

3.3 Constraints on Parameters

Using SCOOP, it becomes possible to express constraints on types. Since we have in-
heritance between classes, we can specify that we only want asubclass of a particular
type, thereby constraining the input type. Thus, OOP’s ability to handle two different
sets of types has been kept in SCOOP, as demonstrated in Figure 7.

Actually, two kinds of constraints are made possible: accept a type and all its sub-
classes or accept only this type. Both kinds of constraints are illustrated in Figure 8. We
have the choice between letting theEXACTparameter free to accept all its subclasses,
or freezing it (generally toItself) to accept only this exact type.

3.4 Associations

In SCOOP, the implementation of object composition or aggregation is very close to
its equivalent in C++ OOP. Figure 9 illustrates the way an aggregation relation is im-
plemented in our paradigm, in comparison with classical OOP. We want a classB to
aggregate an object of typeC, which is an abstract class. The natural way to implement
this in classical OOP is to maintain a pointer on an object of type C as a member of
classB. In SCOOP, the corresponding meta-classB is parameterized byEXACT, as ex-
plained in Section 3.1. Since all types have to be known statically, B must know the
effective type of the object it aggregates. A second parameter, EXACT_C, is necessary
to carry this type. Then,B only has to keep a pointer on an object of typeC<EXACT_C>.
As explained in Section 3.3, this syntax ensures that the aggregated object type is a
subclass ofC. This provides stronger typing than the generic programming idioms for
aggregation proposed in [20].

16

void foo(A1& arg)
{

// ...
}

void foo(A2& arg)
{

// ...
}

template <classEXACT>

void foo(A1<EXACT>& arg)
{

// ...
}

template <classEXACT>

void foo(A2<EXACT>& arg)
{

// ...
}

Fig. 7. Constraints on arguments and overloading
Left (classical OOP) and right (SCOOP) codes have the same behavior. Classical overloading

rules are applied in both cases. Subclasses ofA1 andA2 are accepted in SCOOP too; the
limitation of GP has been overcome.

template <classEXACT>

void foo(A<EXACT>& a)
{

// ...
}

void foo(A<Itself>& a)
{

// ...
}

Fig. 8.Kinds of constraints
On the left,A and all its subclasses are accepted. On the right, only exactA arguments are

accepted. As mentioned in section 2.1, contrary to other languages like Ada, C++ cannot make
this distinction; this is therefore another restriction overcome by SCOOP.

17

As for hierarchy unfolding (Section 3.1), this aggregationpattern generates as many
versions ofB as there are distinct parametersEXACT_C. Each effective version ofB is
dedicated to a particular subclass ofC. Thus, it is impossible to change dynamically
the aggregated object for an object of another concrete type. This limitation is directly
related to the rejection of dynamic operations, as mentioned in Section 2.3.

B

+ c:C* c C

...

aggregation in classical OOP

B

EXACT_C
EXACT

+ c:C<EXACT_C> * c C
EXACT_C

...

aggregation in SCOOP

Fig. 9. Comparison of aggregation in OOP and SCOOP

3.5 Covariant Arguments

Covariant parameters may be simulated in C++ in several ways. It can be done by
using adynamic_cast to check and convert at run-time the type of the argument.
This method leads to unsafe and slower programs. Staticallychecked covariance has
already been studied using templates in Surazhsky and Gil [49]. Their approach was
rather complex though, since their typing system was weaker.

Using SCOOP, it is almost straightforward to get staticallychecked covariant pa-
rameters. We consider an example with images and points in 2 and 3 dimensions to
illustrates argument covariance. Figure 10 depicts a UML diagram of our example.
Since anImage2d can be seen as anImage , it is possible to give aPoint3d (seen as a
Point) to anImage2d . This is why classical OO languages either forbid it or perform
dynamic type checking when argument covariance is involved.

Figure 11 details how this design would be implemented in SCOOP. This code
works in three steps:

– Take aPoint<P> argument inImage::set and downcast it into its exact typeP.
Taking aPoint<P> argument ensures thatP is a subclass ofPoint at this particular
level of the hierarchy.

– Lookup set_impl in the exact image type. Since the point argument has been
downcasted towardsP, methods acceptingP (and not justPoint<P>) are candidate.

– In SCOOP, since method dispatch is performed at compile-time, argument covari-
ance will be checked statically. The compilation fails if nomethod accepting the
given exact point type is available.

18

Point

Point2d Point3dImage2d

+set(p:Point2d, val:int): void

Image

+set(p:Point, val:int):void

Image3d

+set(p:Point3d, val:int): void

Fig. 10.Argument covariance example in UML

Finally, we have effectively expressed argument covariance. Points have to conform
to Point at the level ofImage , and toPoint2d at the level ofImage2d .

3.6 Polymorphictypedefs

In this section we show how we can write virtualtypedefs (we also call them poly-
morphictypedefs) in C++. From a base class we want to accesstypedefs defined in
its subclasses. Within our paradigm, although base classeshold the type of their most
derived subclass, it is not possible to access fields of an incomplete type. When a base
class is instantiated, itsEXACTparameter is not completely constructed yet because base
classes have to be instantiated before subclasses. A good solution to cope with this issue
is to use traits [36, 54]. Traits can be defined on incomplete types, thereby avoiding the
infinite recursion.

The overall mechanism is described in Figure 12. To allow thebase class to
accesstypedefs in the exact class, traits have been defined for the exact type
(image_traits). To ensure correct typedef inheritance, we create a hierarchy of traits
which reproduces the class hierarchy. Thus,typedefs are inherited as if they were ac-
tually defined in the class hierarchy. As for argument covariance, virtualtypedefs are
checked statically since method dispatch is performed at compile-time. The compilation
fails if a wrong point type is given to anImage2d .

There is an important difference between classical virtualtypes and our virtual
typedefs. First, the virtualtypedefs we have described are not constrained. The
point_type virtual typedef does not have to be a subclass ofPoint . It can be any
type. It is possible to express a subclassing constraint though, by checking it explicitly
using a meta-programming technique detailed in Appendix A.3.

One should note that in our paradigm, when usingtypedefs, the resulting type
is a single type, not a class of types (with the meaning of Section 3.3). A procedure
taking this type as argument does not accept its subclasses.For instance, a subclass
SpecialPoint2d of Point2d is not accepted by theset method. This problem is
due to the impossibility in C++ to maketemplate typedefs, thus we have to bound
the exact type of the class when making atypedef on it. It is actually possible to
overcome this problem by encapsulating open types in boxes.This is not detailed in
this paper though.

19

template <classEXACT>

struct Point : public Any<EXACT> {};

template <classEXACT = Itself>
struct Point2d : public Point<find exact (Point2d)>
{

// ...
};

template <classEXACT = Itself>
struct Point3d : public Point<find exact (Point3d)>
{

// ...
};

template <classEXACT>

struct Image : Any<EXACT>

{
template <classP>

void set (const Point<P>& p, int val) {
// static dispatch
// p is downcasted to its exact type
return this −>exact().setimpl (p. exact (), val);

}
};

template <classEXACT = Itself>
struct Image2d :public Image<find exact(Image2d)>
{

template <classP>

void set impl (const Point2d<P>& p, int val) {
// ...

}
};

int main() {
Image2d<> ima;
ima. set (Point2d<>(), 42); // ok
ima. set (Point3d<>(), 51); // fails at compile−time

}

Fig. 11.Argument covariance using SCOOP
Compilation fails if the compiler cannot find an implementation of set_impl for the exact

type of the given point inImage2d .

20

// Point , Point2d and Point3d

// A forward declaration is enough to define imagetraits
template <classEXACT> struct Image;

template <classEXACT> struct imagetraits;

template <classEXACT>

struct imagetraits< Image<EXACT> >

{
// default typedefs for Image

};

template <classEXACT>

struct Image : Any<EXACT>

{
typedef typenameimagetraits<EXACT>::point type pointtype;

void set (const point type & p, int val) {
this−>exact().setimpl (p, val);

}
};

// Forward declaration
template <classEXACT> struct Image2d;

// imagetraits for Image2d inherits from imagetraits for Image
template <classEXACT>

struct imagetraits< Image2d<EXACT> >

: public imagetraits<Image<find exact(Image2d)> >

{
// We have to specify a concrete type , we cannot write :
// typedef template Point2d pointtype ;

typedef Point2d< Itself> point type ;
// ... other default typedefs for Image2d

};

template <classEXACT = Itself>
struct Image2d :public Image<find exact(Image2d)>
{

// ...
};

int main() {
Image2d<> ima;
ima. set (Point2d<>(), 42); // ok
ima. set (Point3d<>(), 51); // fails at compile−time

}

Fig. 12.Mechanisms of virtualtypedefs with SCOOP
21

3.7 Multimethods

Several approaches have been studied to provide multimethods in C++, for instance
Smith [45], which relies on preprocessing.

In SCOOP, a multimethod is written as a set of functions sharing the same name.
The dispatching is then naturally performed by the overloading resolution, as depicted
by Figure 13.

template <class I1 , class I2>

void algo2(Image<I1>& i1, Image<I2>& i2);

template <class I1 , class I2>

void algo2(Image2d<I1>& i1, Image3d<I2>& i2);

template <class I1 , class I2>

void algo2(Image2d<I1>& i1, Image2d<I2>& i2);

// ... other versions of algo2

template <class I1 , class I2>

void algo1(Image<I1>& i1, Image<I2>& i2)
{

// dispatch will be performed on the exact image types
algo2(i1 . exact (), i2 . exact ());

}

Fig. 13.Static dispatch for multi-methods
algo1 downcastsi1 andi2 into their exact types when callingalgo2 . Thus, usual

overloading rules will simulate multimethod dispatch.

4 Conclusion and Perspectives

In this paper, we described a proposal for a Static C++ Object-Oriented Programming
(SCOOP) paradigm. This model combines the expressiveness of traditional OOP and
the performance gain of static binding resolution thanks togeneric programming mech-
anisms. SCOOP allows developers to design OO-like hierarchies and to handle abstrac-
tions without run-time overhead. SCOOP also features constrained parametric polymor-
phism, argument covariance, polymorphictypedefs, and multimethods for free.

Yet, we have not proved that resulting programs are type safe. The type properties
of SCOOP have to be studied from a more theoretical point of view. Since SCOOP
is static-oriented, object types appear with great precision. We expect from the C++
compiler to diagnose most programming errors. Actually, wehave the intuition that this

22

kind of programming is closely related to thematchingtype system of Bruce et al. [11].
In addition, functions in SCOOP seem to be f-bounded [12].

The main limitations of our paradigm are common drawbacks ofthe intensive use
of templates:

– closed world assumption;
– heavy compilation time;
– code bloat (but we trade disk space for run-time efficiency);
– cryptic error messages;
– unusual code, unreadable by the casual reader.

The first limitation prevents the usage of separated compilation and dynamic libraries.
The second one is unavoidable since SCOOP run-time efficiency relies on the C++ ca-
pability of letting the compiler perform some computations. The remaining drawbacks
are related to the convenience of thecore developer, i.e. the programmer who designs
the hierarchies and should take care about core mechanisms.Cryptyc error messages
can be helped by the use of structural checks mentionned in Section 2.4, which are not
incompatible with SCOOP.

This paradigm has been implemented and successfully deployed in a large scale
project: Olena, a free software library dedicated to image processing [37]. This li-
brary mixes different complex hierarchies (images, points, neighborhoods) with highly
generic algorithms.

Although repelling at first glance, SCOOP can be assimilatedrelatively quickly
since its principles remain very close to OOP. We believe that SCOOP and its collection
of constructs are suitable for most scientific numerical computing projects.

23

A Technical Details

A.1 Implementation of find_exact

The find_exact mechanism, introduced in Section 3.1, is used to enable classes that
are both concrete and extensible within our static hierarchy system. This kind of class
is parameterized byEXACT: the type of the object effectively instantiated. Contrary
to abstract classes, concrete extensible classes cannot propagate directly theirEXACT

parameter to their parents, as explained in Section 3.1. A simple utility macro called
find_exact is necessary to determine theEXACTtype to propagate. This macro relies
on a meta-program,FindExact , whose principle is described in Figure 14. and the
corresponding C++ code is given in Figure 15.

FindExact(Type , EXACT)
{

if EXACT 6= ‘‘ Itself ’’
return EXACT ;

else
return Type < Itself >;

}

Fig. 14.FindExact mechanism: algorithmic description

// default version
template <classT, class EXACT>

struct FindExact
{

typedef EXACT ret;
};

// version specialized for EXACT=Itself
template <classT>

struct FindExact<T, Itself>
{

typedef T ret ;
};

// find exact utility macro
#define find exact (Type)typenameFindExact<Type<Exact>, Exact>::ret

Fig. 15.FindExact mechanism: C++ implementation

24

A.2 Static Dispatch with Virtual Inheritance

Using astatic_cast to downcast a type does not work when virtual inheritance is
involved. Let us consider an instance of EXACT. It is possible to create anAny<EXACT>

pointer on this instance. In the following, the address pointed to by theAny<EXACT>

pointer is called “theAny address” and the address of theEXACTinstance is called the
“exact address”.

The problem with virtual inheritance is that theAny address is not necessarily the
same as the exact address. Thus, evenreinterpret_cast or void* casts will not
help. We actually found three solutions to cope with this issue. Each solution has its
own drawbacks and benefits, but only one is detailed in this paper.

The main idea is that the offset between theAny address and the exact address
will remain the same for all the instances of a particular class (we assume that C++
compilers will not generate several memory model for one given class). The simplest
way to calculate this offset is to compute the difference between an object address and
the address of anAny<EXACT>reference to it. This has to be done only once per exact
class. The principle is exposed in Figure 16.

This method has two drawbacks. First, it requires a generic way to instantiate the
EXACTclasses, for instance a default constructor. Second, one object per class (not
per instance!) is kept in memory. If an object cannot be empty(for example storing
directly an array), this can be problematic. However, this method allows the compiler
to perform good optimizations. In addition, only a modification of Any is necessary, a
property which is not verified with other solutions we found.

A.3 Checking Subclassing Relation

Checking if a subclass of another is possible in C++ using templates. The
is_base_and_derived<T,U> tool from the Boost [7]type traits library per-
forms such a check. Thus, it becomes possible to prevent a class from being instantiated
if the virtual types does not satisfy the required subclassing constraints.

B Conditional Inheritance

Static hierarchies presented in Section 3.1 come with simple mechanisms. These pa-
rameterized hierarchies can be considered as meta-hierarchies simply waiting for the
exact object type to generate real hierarchies. It is generally sufficient for the perfor-
mance level they were designed for. In order to gain modelingflexibility and genericity,
one can imagine some refinements in the way of designing such hierarchies. The idea
of the conditional inheritance technique is to adapt automatically the hierarchy accord-
ing to statically known factors. This is made possible by theC++ two-layer evaluation
model (evaluation at compile-time and evaluation at run-time) [30]. In practice, this
implies that the meta-hierarchy comes with static mechanisms to discriminate on these
factors and to determine the inheritance relations. Thus, the meta-hierarchy can gener-
ate different final hierarchies through these variable inheritance links.

To illustrate the conditional inheritance mechanism, we introduced a UML-like
symbol that we called aninheritance switch. Figure 18 gives a simple use case. This

25

template <classEXACT>

struct Any
{

// exactoffset has been computed statically
// A good compiler can optimize this code and avoid any run−time overhead
EXACT& exact(){

return ∗(EXACT∗)((char∗)this − exactoffset);
}

private :
static const int exactoffset ;
static const EXACT exactobj;
static const Any<EXACT>& ref exactobj;

};

// Initialize an empty object
// Require a default constructor in EXACT
template <classEXACT>

const EXACT Any<EXACT>::exactobj = EXACT();

// Upcast EXACT into Any<EXACT>
template <classEXACT>

const Any<EXACT>& Any<EXACT>::ref exactobj = Any<EXACT>::exactobj;

// Compute the offset
template <classEXACT>

const int Any<EXACT>::exactoffset =
(char∗)(&Any<EXACT>::ref exactobj)
− (char∗)(&Any<EXACT>::exactobj);

Fig. 16.One method to handle virtual inheritance
The offset between theAny address and the address of theEXACTclass is computed once by

using a static object. Since everything is static and const,the compiler can optimize and remove
the cost of the subtraction.

26

// ...

template <bool b>

struct type assert
{};

template <>

struct type assert<true>

{
typedef void ret ;

};

#define ensureinheritance (Type, Base) \
typedef typename \

type assert< \
is baseand derived<Base, Type>::value \

>:: ret ensure##Type

template <classEXACT>

struct Image : Any<EXACT>

{
typedef typenameimagetraits<EXACT>::point type pointtype;

// Will not compile if pointtype is not a Point since ret
// is not defined if the assertion fails .
ensureinheritance (pointtype , Point<point type>);

};

// ...

Fig. 17.Specifying constraints on virtual types

27

example introduces an image hierarchy with a concrete classwhose inheritance is con-
ditional:SpecialImage . SpecialImage is parameterized by an unsigned valueDim.
We want this class to inherit fromImage2d or Image3d depending on the value of
Dim. SpecialImage ’s inheritance is thus represented by an inheritance switch. Fig-
ure 19 presents the corresponding C++ code. The inheritanceswitch is implemented by
theISwitch trait parameterized by the dimension value. Its specialization on2 (resp.3)
definesImage2d (resp.Image3d) as result type. Finally,SpecialImage<Dim> only
has to inherit fromISwitch<Dim> ’s result type.

The factors on which inheritance choices are made are necessarily static values. This
includes types, provided bytypedef s or parameterization, as constant integer values.
The effective factors are not necessarily directly available data but can be deduced from
static pieces of information. Trait structures can then be used to perform more or less
complex information deductions. One should also note that the discriminative factors
must be accessible while defining the hierarchy. This implies that these factors must be
independent from the hierarchy or externally defined. In practice, class-related factors
can be made available outside the hierarchy thanks to trait structures and polymorphic
typedef s (see Section 3.6).

SpecialImage
DIM:unsigned

Image

Image2d Image3d

If DIM = 2 Then
 Image2d
Else If DIM = 3 Then
 Image3d

Fig. 18.Simple conditional inheritance sample: UML-like description.

Conditional inheritance mechanisms become particularly interesting when objects
are defined by several orthogonal properties. A natural way to handle such a modeling
problem is to design a simple sub-hierarchy per property. Unfortunately, when defining
the final object, the combinatorial explosion of cases usually implies a multiplication of
the number of concrete classes. Figure 20 illustrates an extension of the previous im-
age hierarchy, with more advanced conditional inheritancemechanisms. We extended
the image hierarchy with two classes gathering data-related properties,ColorImage

andGrayScaleImage . The hierarchy is now split into two parallel sub-hierarchies.

28

class Image
{

// ...
};

class Image2d:public Image
{

// ...
};

class Image3d:public Image
{

// ...
};

template <unsignedDim>

struct ISwitch;

template <>

struct ISwitch<2>

{
typedef Image2d ret ;

};

template <>

struct ISwitch<3>

{
typedef Image3d ret ;

};

template <unsignedDim>

class SpecialImage
: public ISwitch<Dim>::ret

{
// ...

};

Fig. 19.Simple conditional inheritance sample: C++ code

SpecialImage

DIM:unsigned
DATA:type

Image

Image2d Image3d

If DIM = 2 Then
 Image2d
Else If DIM = 3 Then
 Image3d

ColorImage GrayScaleImage

If DIM = Color Then
 ColorImage
Else If DATA = GrayScale Then
 GrayScaleImage

Fig. 20.Conditional inheritance: multiple orthogonal factors.

29

The first one focuses on the dimension property while the second one focuses on the
image data type. The problem is then to define images that gather dimension- and data-
related properties without multiplying concrete classes.The idea is just to implement
a class templateSpecialImage parameterized by the dimension value and the data
type. Combining conditional and multiple inheritance,SpecialImage inherits auto-
matically from the relevant classes. This example introduces the idea of a programming
style based on object properties. ASpecialImage instance is only defined by its prop-
erties and the relevant inheritance relations are deduced automatically.

Finally, mixing conditional inheritance mechanism with other classical and static
programming techniques results in powerful adaptive solutions. This work in progress
has not been published yet.

30

Bibliography

[1] International standard: Programming language – C++. ISO/IEC 14882:1998(E),
1998.

[2] G. Aigner and U. Hölzle. Eliminating virtual function calls in C++ programs.
In In the Proceedings of the 10th European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 1098 ofLecture Notes in Computer Science, pages
142–167. Springer-Verlag, 1996.

[3] A. Alexandrescu.Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Addison-Wesley, 2001.

[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls.
In In the Proceedings of the ACM Conference on Object-OrientedProgramming
Systems, Languages and Applications (OOPSLA), pages 324–341, 1996.

[5] J. Barton and L. Nackman.Scientific and engineering C++. Addison-Wesley,
1994.

[6] G. Baumgartner and V. F. Russo. Implementing signaturesfor C++. ACM Trans-
actions on Programming Languages and Systems, 19(1):153–187, January 1997.

[7] Boost. Boost libraries, 2003. URLhttp://www.boost.org .
[8] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for

the past: Adding genericity to the Java programming language. In C. Chambers,
editor,In the Proceedings of the ACM Conference on Object-OrientedProgram-
ming Systems, Languages and Applications (OOPSLA), pages 183–200, Vancou-
ver, BC, 1998.

[9] K. B. Bruce, A. Fiech, A. Schuett, and R. van Gent. PolyTOIL: A type-safe
polymorphic object-oriented language.ACM Transactions on Programming Lan-
guages and Systems (ToPLAS), 25(2):225–290, March 2003.

[10] K. B. Bruce, M. Odersky, and P. Wadler. A statically safealternative to virtual
types. InIn the Proceedings of the 12th European Conference on Object-Oriented
Programming (ECOOP), volume 1445 ofLecture Notes in Computer Science,
pages 523–549, Brussels, Belgium, July 1998. Springer-Verlag.

[11] K. B. Bruce, L. Petersen, and A. Fiech. Subtyping is not agood ”match” for
object-oriented languages. InIn the Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP), volume 1241 ofLecture Notes in
Computer Science, pages 104–127, Jyväskylä, Finland, 1997. Springer-Verlag.

[12] P. S. Canning, W. R. Cook, W. L. Hill, J. C. Mitchell, and W. G. Olthoff. F-
bounded polymorphism for object-oriented programming. InIn the Proceedings
of the 4th International Conference on Functional Programming Languages and
Computer Architecture (FPCA’89), pages 73–280, London, UK, September 1989.
ACM.

[13] L. Cardelli and P. Wegner. On understanding types, dataabstraction, and poly-
morphism.Computing Surveys, 17(4):471–522, December 1985.

[14] C. Chambers, J. Dean, and D. Grove. Wholeprogram optimization of object-
oriented languages. Technical Report UW-CSE-96-06-02, University of Wash-
ington, Department of Computer Science and Engineering, June 1996.

31

[15] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not subtyping. In
Conference Record of the 17th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL), pages 125–135, San Francisco, California, USA,
January 1990. on l’a pas.

[16] J. Coplien.Curiously Recurring Template Pattern. In [?].
[17] K. Czarnecki and U. Eisenecker.Generative programming: Methods, Tools, and

Applications. Addison-Wesley, 2000.
[18] K. Driesen and U. Hölzle. The direct cost of virtual function calls in C++. InIn the

Proceedings of the ACM Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), SIGPLAN Notices 31(10), pages 306–
323, 1996.

[19] A. Duret-Lutz. Expression templates in Ada. InIn the Proceedings of the 6th
International Conference on Reliable Software Technologies, Leuven, Belgium,
May 2001 (Ada-Europe), volume 2043 ofLecture Notes in Computer Science,
pages 191–202. Springer-Verlag, 2001.

[20] A. Duret-Lutz, T. Géraud, and A. Demaille. Design patterns for generic pro-
gramming in C++. InIn the Proceedings of the 6th USENIX Conference on
Object-Oriented Technologies and Systems (COOTS), pages 189–202, San An-
tonio, Texas, USA, January-February 2001. USENIX Association.

[21] G. Furnish. Disambiguated glommable expression templates. Computers in
Physics, 11(3):263–269, 1997.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design patterns – Elements
of reusable object-oriented software. Professional Computing Series. Addison
Wesley, 1995.

[23] T. Géraud, A. Duret-Lutz, and A. Adjaoute. Design patterns for generic program-
ming. In M. Devos and A. Rüping, editors,In the Proceedings of the 5th European
Conference on Pattern Languages of Programs (EuroPLoP’2000). UVK, Univ.
Verlag, Konstanz, July 2000.

[24] T. Géraud, Y. Fabre, and A. Duret-Lutz. Applying generic programming to image
processing. In M. Hamsa, editor,In the Proceedings of the IASTED International
Conference on Applied Informatics – Symposium Advances in Computer Applica-
tions, pages 577–581, Innsbruck, Austria, February 2001. ACTA Press.

[25] J. Järvi and G. Powell. The lambda library: Lambda abstraction in C++. InIn the
Proceedings of the 2nd Workshop on Template Programming (inconjunction with
OOPSLA), Tampa Bay, Florida, USA, October 2001.

[26] M. Jazayeri, R. Loos, and D. Musser, editors.Generic Programming: Interna-
tional Seminar, Dagstuhl Castle, Germany, 1998, Selected Papers, volume 1766
of Lecture Notes in Computer Science, 2000. Springer-Verlag.

[27] A. Langer. Implementing design patterns using C++ templates. Tutorial at the
ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), October 2000.

[28] B. Liskov, D. Curtis, M. Day, S. Ghemawhat, R. Gruber, P.Johnson, and A. C.
Myers. Theta reference manual. Technical Report 88, Programming Methodology
Group, MIT Laboratory for Computer Science, Cambridge, MA,USA, February
1995.

32

[29] B. Liskov, A. Snyder, R. Atkinson, and J. C. Schaffert. Abstraction mechanisms
in CLU. Communications of the ACM, 20(8):564–576, August 1977.

[30] F. Maes. Program templates: Expression templates applied to program evalua-
tion. In J. Striegnitz and K. Davis, editors,In the Proceedings of the Workshop
on Declarative Programming in the Context of Object-Oriented Languages (DP-
COOL; in conjunction with PLI), number FZJ-ZAM-IB-2003-10 in John von Neu-
mann Institute for Computing (NIC), Uppsala, Sweden, August 2003.

[31] B. McNamara and Y. Smaragdakis. Static interfaces in C++. In First Workshop
on C++ Template Programming, Erfurt, Germany, October 10 2000.

[32] B. Meyer. Genericity versus inheritance. InProceedings of the Conference on
Object Oriented Programming Systems Languages and Aplications (OOPSLA),
pages 391–405, Portland, OR, USA, 1986.

[33] B. Meyer.Eiffel: the Language. Prentice Hall, 1992.
[34] S. Meyers. How non-member functions improve encapsulation. 18(2):44–??, Feb.

2000. ISSN 1075-2838.
[35] A. C. Myers, J. A. Bank, and B. Liskov. Parameterized types for java. InIn

the Proceedings of the 24th ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 132–145, Paris, France, January 1997.

[36] N. C. Myers. Traits: a new and useful template technique. C++ Report, 7(5):
32–35, June 1995.

[37] Olena. Olena image processing library, 2003. URLhttp://olena.lrde.
epita.fr .

[38] oonumerics. Scientific computing in object-oriented languages, 2003. URL
http://www.oonumerics.org .

[39] Y. Régis-Gianas and R. Poss. On orthogonal specialization in C++: Dealing with
efficiency and algebraic abstraction in Vaucanson. In J. Striegnitz and K. Davis,
editors,In the Proceedings of the Parallel/High-performance Object-Oriented Sci-
entific Computing (POOSC; in conjunction with ECOOP), number FZJ-ZAM-IB-
2003-09 in John von Neumann Institute for Computing (NIC), Darmstadt, Ger-
many, July 2003.

[40] X. Rémy and J. Vouillon. On the (un)reality of virtual types. URLhttp://
pauillac.inria.fr/ ∼remy/work/virtual/ . March 2000.

[41] U. P. Schultz. Partial evaluation for class-based object-oriented languages. In
Program as Data Objects: International Conference on the Theory and Applica-
tion of Cryptographic Techniques, Innsbruck, Austria, May2001, Proceedings,
volume 2053 ofLecture Notes in Computer Science, pages 173–198. Springer-
Verlag, 2001.

[42] J. Siek and A. Lumsdaine. Concept checking: Binding parametric polymorphism
in C++. In Proceedings of the First Workshop on C++ Template Programming,
Erfurt, Germany, October 2000.

[43] Y. Smaragdakis and D. Batory. Mixin-based programmingin C++. In In the
Proceedings of the 2nd International Conference on Generative and Component-
based Software Engineering (GCSE), pages 464–478. tranSIT Verlag, Germany,
October 2000.

[44] Y. Smaragdakis and B. McNamara. FC++: Functional toolsfor object-oriented
tasks.Software - Practice and Experience, 32(10):1015–1033, August 2002.

33

[45] J. Smith. C++ & multi-methods.ACCU spring 2003 conference, 2003.
[46] A. Stepanov, M. Lee, and D. Musser.The C++ Standard Template Library.

Prentice-Hall, 2000.
[47] J. Striegnitz and S. A. Smith. An expression template aware lambda function. InIn

the Proceedings of the 1st Workshop on Template Programming, Erfurt, Germany,
October 2000.

[48] B. Stroustrup.The Design and Evolution of C++. Addison-Wesley, 1994.
[49] V. Surazhsky and J. Y. Gil. Type-safe covariance in C++,2002.

URL http://www.cs.technion.ac.il/ ∼yogi/Courses/
CS-Scientific-Writing/examples/paper/main.pdf . Unpub-
lished.

[50] K. K. Thorup. Genericity in Java with virtual types. InProceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP), volume 1241
of Lecture Notes in Computer Science, pages 444–471, Jyväskylä, Finland, June
1997. Springer-Verlag.

[51] K. K. Thorup and M. Torgersen. Unifying genericity: Combining the bene-
fits of virtual types and parameterized classes. In R. Guerraoui, editor, In the
Proceedings of the 13th European Conference on Object-Oriented Programming
(ECOOP), volume 1628 ofLecture Notes in Computer Science, pages 186–204,
Lisbon, Portugal, June 1999. Springer-Verlag.

[52] D. Vandevoorde and N. M. Josuttis.C++ Templates: The Complete Guide.
Addison-Wesley, 2003.

[53] T. Veldhuizen.Expression Templates, pages 475–487. In [?].
[54] T. L. Veldhuizen. Techniques for scientific C++, August1999. URLhttp:

//extreme.indiana.edu/ ∼tveldhui/papers/techniques/ .
[55] T. L. Veldhuizen and A. Lumsdaine. Guaranteed optimization: Proving nullspace

properties of compilers. InStatic Analysis, 9th International Symposium, SAS
2002, Madrid, Spain, September 17-20, 2002, Proceedings, volume 2477 ofLec-
ture Notes in Computer Science, pages 263–277. Springer-Verlag, 2002.

[56] Xt. A bundle of program transformation tools. Available on the Internet, 2003.
URL http://www.program-transformation.org/xt .

[57] O. Zendra, D. Colnet, and S. Collin. Efficient Dynamic Dispatch without Virtual
Function Tables. The SmallEiffel Compiler. InIn the Proceedings of the 12th
ACM Conference on Object-Oriented Programming Systems, Languages and Ap-
plications (OOPSLA), volume 32 ofIssue 10, pages 125–141, Athlanta, GA, USA,
October 1997.

34

Object-Model Independence via Code Implants

Michał Cierniak1, Neal Glew2, Spyridon Triantafyllis3, Marsha Eng2,
Brian Lewis2, and James Stichnoth2

1 Microsoft Corporation
2 Microprocessor Technology Lab, Intel Corporation

3 Department of Computer Science, Princeton University

Abstract. Managed runtime environments, such as those that execute Java or
CLI programs, require close cooperation between the virtual machine (VM) and
user code, which is usually compiled by a just-in-time compiler (JIT). Although
operations such as field access, virtual method dispatch, and type casting depend
on VM data structures, having user code call the VM for these operations is very
inefficient. Thus, most current JITs directly generate codefor these operations
based on assumptions about the VM’s implementation. Although this design of-
fers good performance, it locks the VM and the JIT together, which makes mod-
ifications difficult. In addition, it is hard to experiment with new algorithms and
strategies, which may ultimately hurt performance. Finally, extending a runtime
platform to support new programming paradigms may require reimplementing
the entire system.
We propose a mechanism that allows VMs to implant code into JIT-compiled
code. This mechanism allows a strict interface between the JIT and the VM with-
out sacrificing performance. Among other things, it isolates most programming-
paradigm aspects within the VM, thus greatly facilitating multiparadigm support.
This paper presents our system for code implants, gives an early evaluation of it,
and describes how it could be used to implement several programming-paradigm
extensions to Java with relatively little implementation effort.

1 Introduction

The Open Runtime Platform(ORP [6, 1]) is a high-performance implementation of
a virtual machine for Java4 [15] and the Common Language Infrastructure (CLI [10]).
ORP supports Java and CLI with essentially the same implementation, with only subsets
of the implementation being Java or CLI specific. This dual support of both CLI and
Java is, as far as we know, unique among virtual machines. It also raises the question of
whether we can extend ORP to support other programming paradigms.

ORP uses interfaces to partition its implementation into several well-defined mod-
ules: the core virtual machine (VM), the just-in-time compiler (JIT), and the garbage
collector (GC). ORP’s modular design facilitates experimentation, and allows using
multiple JIT and GC implementations with the same core VM. Todate we have used
seven different JITs (see,e.g., [2, 7, 5, 1]) and five different GCs.

However, portions of ORP’s current interfaces sacrifice cleanliness for performance.
For instance, the JIT can implement a type-inclusion test either as a call to the VM

4 Other brands and names are the property of their respective owners.

35

or as an inlined instruction sequence. While a call-based sequence is independent of
the VM’s implementation, its performance is slower. An inlined sequence can be very
fast (e.g., through the use of Cohen’s type displays [8]), but it relieson specific VM
data structures and may be incorrect if the VM data structures change. Furthermore,
some code sequences are so performance-sensitive that the VM does not provide a
function to call, and instead the JIT must rely on specific data structures. Virtual method
dispatch is an example. ORP uses vtables for virtual method dispatch, and every JIT
must understand this implementation and generate vtable-based code.

Many code sequences assume that ORP only supports single-inheritance languages
like Java and CLI, and we never considered abstracting thesesequences. For example,
an upcast is a no-op in ORP, but common implementations of languages with multiple
inheritance (e.g., C++) require that an upcast add an offset to the object pointer. Simi-
larly, for a field access in Java, the JIT can generate the address of the field by adding
a compile-time constant to the object pointer. In languageswith dependent multiple
inheritance, an indirection through anindex tablemay be required (see,e.g., Gruneet
al. [13, Section 6.2.9.6]).

For ORP to support other languages such as Python or Scheme, we would have to
change ORP’s object model to include, for instance, multiple inheritance and possibly
multi-methods. This would make its current use of vtables and type displays inappro-
priate, and would make today’s ORP JITs generate incorrect code.

We would also like to experiment with supporting new programming paradigms in
ORP. Due to the broad acceptance of the Java language, several Java extensions have
been proposed to support additional programming paradigms. These extensions include
both standard [14] and dynamic [4, 17] aspect-oriented programming, multiple inher-
itance, mixin-type inheritance [11], and aspects of functional programming [16, 20].
With the exception of standard aspect-oriented programming, only proof-of-concept
implementations exist for the other extensions. More realistic implementations do not
exist because of the great difficult of extending most existing Java systems. Even to-
day’s ORP would require changes to multiple components including the JITs to support
many of these extensions.

This paper proposes a system for the VM to specify, in a CPU-independent fashion,
low-level instruction sequences (stubs) that the JIT can then inline into the code it emits.
This system, which includes theLIL language, simplifies the generation of the intricate
code sequences needed to implement various language operations like a virtual method
dispatch, a type-inclusion test, or a type cast. We argue that it can also support new
object models and programming paradigms. It abstracts awaydetails that depend on
the object model or programming paradigm, and make JITs oblivious to the details
of their implementation. We further argue that these benefits will be possible without
sacrificing the performance of today’s ORP. It has the additional benefit of simplifying
maintenance for multiple CPU architectures.

This paper presents our results to date. We describe theLIL language in Section 2.
To make our proposal concrete, we describe in some detail howto implement one oper-
ation, downcasts, usingLIL in Section 3. We discuss how the VM and JIT interoperate
to inline this code sequence into JIT-generated code, and present the results of an exper-
iment to evaluate the performance impact from inlining thisoperation. Section 4 gives

36

an overview of using this system for adding new programming paradigms to ORP with
only modest implementation effort.

2 LIL

We designed a language calledLIL5 to express low-level code to be inlined in a CPU-
independent way. This section gives a brief overview ofLIL.

Here is an example of aLIL stub that invokes a virtual method on an object.

entry 0:managed:ref,g4,f4:g1;
locals 1;
ld l0,[i0+0:pint];
ld l0,[l0+32:pint];
in2out managed:g1;
call l0;
ret;

This stub is compiled into code that acts like a function. Thestub’sentry line states
that it is called using the managed-code calling convention(i.e., the VM-specified con-
vention for calling JIT-generated code) with three arguments, and that it returns a result.
The arguments are of typeref (reference to an object in the heap),g4 (32-bit general-
purpose value), andf4 (32-bit floating-point value), and the result is of typeg1 (8-bit
general-purpose value). (The “0” reflects a low-level implementation detail that is be-
yond the scope of this paper.) The rest of the stub consists ofthe instructions that are to
be executed when the stub is called.

– The locals 1; instruction declares a single local variable.
– Theld l0,[i0+0:pint] instruction loads apint (pointer-sized general pur-

pose value, often used for pointers that are not objects in the heap) from the ad-
dress given byi0 (the first argument) intol0 (the first local)—in this example,
this pointer points to the vtable for the object whose methodis being invoked.

– The secondld instruction loads apint from the address given byl0 plus 32—in
this example, this is the entry in the vtable for the method being invoked.

– The third instruction (in2out managed:g1) sets up for a call; in particular, it
copies the arguments into an output area, and declares that the call will use the
managed-code calling convention and return ag1 into the implicit variabler .

– The call l0 instruction calls the address inl0 and sets the variabler to the
value returned.

– The finalret instruction returns. The current value ofr is the value returned by
the stub.

Notice that the stub implicitly makes a tail call.LIL has an explicit way to make a
tail call that is optimized by the code generator. The above stub could also be expressed
as:

5 LIL stands for Low-level Intermediate Language, and its pronunciation suggests its “little”ness
or lightweight nature.

37

entry 0:managed:ref,g4,f4:g1;
locals 1;
ld l0,[i0:pint+0:pint];
ld l0,[l0+32:pint];
tailcall l0;

All LIL variables and operations are typed by a simple type system. The type system
makes just enough distinctions to know the width of values and where they should be
placed in a given calling convention. For example, the type system distinguishes be-
tween floating-point and general-purpose values but not between signed and unsigned.
In addition, the type system distinguishes various kinds ofpointers (e.g., pointers to
heap objects versus pointers to fixed VM data structures), because in the future we may
want theLIL code generator to be able to enumerate GC roots onLIL activation frames.

A LIL stub executes with an activation frame on the stack. Conceptually, this ac-
tivation frame is divided into a number of areas that can varyin size and type across
the execution of the stub. For our purposes, the areas are inputs, locals, outputs, and
return. The inputs initially hold the arguments parsed by the caller, but they can change
by assignment. Their number and type is fixed across the stub.The locals hold values
local to the stub. Their number is determined bylocals instructions, and their types
are determined by a simple flow analysis. The outputs hold values passed to functions
called by the stub. Their number and types are determined byin2out andout in-
structions. These instructions set up an output area and assign to the outputs, and then a
call instruction performs the actual call. The return is a singlelocation that is present
following acall instruction or whenever an assignment is made to it; its typeis deter-
mined by a flow analysis. Each input, local, output, and return is aLIL variable, and are
referred to using the namesi0 , i1 , . . . , l0 , l1 , . . . ,o0 , o1 , . . . , andr , respectively.

LIL’s instructions include arithmetic operations, loads, stores, conditional and un-
conditional jumps, calls, and returns. They are summarizedin Table 1. An operando
is either aLIL variable or an immediate value. The address part of load, store, and
increment instructions can include a base variable, a scaled index variable, and an im-
mediate offset; the scale can be one, two, four, or eight. This format was chosen to
easily take advantage of instructions and addressing modesof the IA32 architecture,
the ItaniumR©Processor Family (IPF) architecture, and other architectures. The address
also includes the type of the value being loaded, stored, or incremented. The conditions
in a conditional jump are standard comparisons (equal, not equal, less, etc.) between
two operands.

LIL also includes some constructs specific to our virtual machine, such as access-
ing thread-local data for synchronization or object allocation. However, these do not
concern this paper and will not be discussed further.

The LIL system has two parts: a parser and a code generator. The parser takes a
C string as input and produces an intermediate representation (IR) of LIL instructions.
The parser includes aprintf -like mechanism for injecting runtime constants such as
addresses of functions or fixed VM data structures. The code generator takes theLIL IR
as input and produces machine instructions for a particulararchitecture.

38

Table 1.LIL General-Purpose Instructions

Category LIL syntax Description

Declarations :label;
locals n;
in2out cc:rettype;
out sig;

Arithmetic v = o; Move
v = uop o; Unary
v = o1 op o2; Binary

Memory access ld v, addr; Load
st addr, o; Store
inc addr; Increment

Calls call o; Normal call
tailcall o; Tail call
call.noret o; Call that does not return
ret;

Branches jc cond, label; Conditional branch
j label; Unconditional branch

3 Subtype Tests

To illustrate how the VM can useLIL to insulate JITs from details of the object model
and type data structures, this section considers subtype tests. Both Java and CLI include
bytecodes likecheckcast andinstanceof that test whether an object is in a par-
ticular type. The typical implementation dereferences theobject to obtain its class’s
data structure, and then tests whether this class is a subtype of the target type. The
naive implementation of this subtype test is to traverse superclass, interface, and array
element-type pointers searching for the target type. In contrast, ORP uses Cohen’s type
display technique [8]. In practice, this implementation ismuch faster than the naive im-
plementation, and improves overall application performance [3]—even more so when
the JIT inlines the fast path into its generated code. However, the code to be inlined is
heavily dependent upon the details of Cohen’s techniques and the details of the VM’s
data structures. This example is an ideal case for showing how knowledge can be iso-
lated in the VM without sacrificing performance.

3.1 Cohen’s Type Displays

The basic idea of Cohen’s type displays is to store a table of ancestors in the type data
structures. In ORP, we store a fixed sized (MAXDEPTH− 1) table in the vtable of each
class. For a class at depthd , if d ≤ MAXDEPTH, then the table contains the class’s
ancestors at level two throughd and thenNULLs; otherwise, the table contains the
class’s ancestors at level two throughMAXDEPTH. Note that every class’s level-one
ancestor isjava.lang.Object (or System.Object in CLI), so we do not need
to store this class. Each entry points to the class data structure for the corresponding

39

class (not to the vtable of that class). To test if a class represented by vtablev is a
subtype of another class represented by class data structurec, ORP does the following.
If c’s depth is one (meaningc is java.lang.Object), the test succeeds. Otherwise
if c’s depthd is less than or equal toMAXDEPTH, ORP compares entryd − 1 of v ’s
ancestor table withc, and this is the result of the subtype test. Otherwise, ORP falls
back to the naive implementation, which is also used if the target type is an interface
or array type. Since the performance-critical cases are most often class types within the
maximum depth, most of the time a short sequence of instructions is executed.

3.2 Implementation

ORP offers runtime helper functions for subtype test operations, and the JIT may gen-
erate calls to the appropriate helper. Forcheckcast , the helper function takes two
arguments: the object, and the class data structure for the target type. To call this helper
function, the JIT emits instructions corresponding to the following simpleLIL stub:

entry 0:managed:ref,pint:ref;
tailcall checkcast_helper;

Since the JIT knows the target type at compile time, the JIT could obtain better
performance by inlining a fast path sequence customized to the target type. To achieve
this inlining in ORP withoutLIL, the JIT would need to know that Cohen’s type dis-
plays are being used, the location of the vtable within objects, and the location of the
ancestor table in vtables. If any of these details change, then the JIT must be changed.
If the object model is changed or Cohen’s algorithm is replaced by another, perhaps
to accommodate multiple inheritance, then the JIT must change accordingly. Prior to
developingLIL, ORP did have a JIT that did this customized inlining, so we are able to
compare its performance against theLIL version.

To address both the performance issue and the software engineering issue, we mod-
ified ORP to useLIL to communicate information from the VM to the JIT without mak-
ing the JIT dependent on this information. Forcheckcast , this works as follows: The
JIT requests from the VM the runtime helper function forcheckcast , and passes at
JIT time the class data structure for the target type. The VM can optionally return aLIL
stub, consisting of a customized sequence for that type, to inline into the JIT-generated
code. If the type is a class type of less than maximal depth, the LIL stub will be the
following (whered is the depth,c is the class data structure for the type,ato is the
offset of the ancestor table within a vtable, andthrow class cast exception is
a helper function that throws an appropriate exception):

entry 0:managed:ref,pint:ref;
jc i0!=0,nonnull;
r=i0;
ret;
:nonnull;
locals 1;
ld l0,[i0+0:pint];
ld l0,[l0+ato+4 * (d-1):pint];

40

jc l0!=c,failed;
r=i0;
ret;
:failed;
out managed::void;
call.noret throw_class_cast_exception;

(Note that the stub is a two-argument function even though itspecialized on its second
argument, and thatato+4 * (d-1) is actually a constant computed by the VM and is
not aLIL expression.) The JIT inlines and converts theLIL stub into its own internal IR.
For typical compiler IRs, this should be straightforward.

In this new implementation, the JIT is not aware that the typeinclusion tests are im-
plemented with type displays. Therefore, if the VM were modified to support multiple
inheritance, the same JIT would still work for Java programswithout any modifications
and with no performance penalty. A new implementation coulduse a technique more
suitable for multiple inheritance like the one described byVitek et al. [19].

The scheme achieves our goal: it allows us to make performance optimizations with-
out making the JIT dependent upon any VM information. All theJIT needs to under-
stand isLIL and how to inline it. The next section evaluates the resulting performance,
showing both that theLIL version performs similarly to the customized JIT version and
that both versions of the JIT achieve speedup over the unoptimized call version.

3.3 Performance evaluation

As an experiment, we modified ORP’s high-performance O3 JIT to include an ad-hoc
runtime helper inlining system. This includes both aLIL inliner and custom versions
of checkcast andinstanceof . The custom version requires the JIT to have spe-
cific knowledge of the type display scheme including detailsof the VM data structures;
theLIL version insulates the JIT from all such details. This section compares the perfor-
mance of both versions of inlining with doing no inlining. Weuse the SPEC JVM98 [18]
benchmark to perform the comparison.6 The measurements are taken on a four proces-
sor 2.0 GHz IntelR© XeonTM machine with HyperThreading disabled, with 4 GB of
RAM, and a heap size of 96 MB.

The results appear in Figure 1. The baseline does no inliningof helper functions;
that is, JIT-generated code calls helper functions in the VM(however, these VM helper
functions do have a fast path using the type displays). The graph shows the performance
improvement of the two versions of inlining over this baseline.

For the most part, there are small but significant performance improvements from
inlining the helper functions. The gains from both schemes are in the same order of
magnitude, ranging from no improvement on Jack and 5.6% on Dbfor ad-hoc inlining,
and less than 1% on Compress and 6.3% on Db forLIL inlining. These results are
encouraging and suggest that code implants offer good performance along with their
other benefits.

6 We use the SPEC benchmarks only as benchmarks to compare the performance of the various
techniques within our own VM. We are not using them to compareour VM to any other VM
and are not publishing SPEC metrics of any kind.

41

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Compress Jess Db Javac Mpegaudio Jack

%
 P

er
fo

rm
an

ce
 G

ai
n

ad-hoc inlining

LIL inlining

Fig. 1. Performance comparison of inlining on SPEC JVM98.

4 Multiparadigm Support

This section shows howLIL code implants can support extensions to ORP’s program-
ming paradigm. As ORP stands today it is not suited for such extensions because some
operations are implemented through ad-hoc JIT-generated sequences. In particular, field
access, method invocation, downcasts, and upcasts are implemented by the JIT. The first
step towards extending ORP’s programming paradigms is to require these operations be
implemented withLIL code implants. Once this is in place, the modifications required
for the extensions discussed in this section are to the VM data structures and to theLIL
that the VM provides to the JITs. The JIT implementation is largely unaffected. In our
experience, the JIT is often the most complex part of the system and any changes to
it are difficult. Therefore, limiting the changes needed to support a new programming
paradigm to the core VM greatly simplifies the extension’s implementation.

4.1 Aspect-Oriented Programming

Aspect-Oriented Programming (AOP) has been gaining popularity in recent years. Typ-
ically AOP extensions to Java are implemented without any changes to the JVM imple-
mentation and generate standard class files. AspectJ [9] is apopular example of such a
system.

A new class of AOP applications is emerging that require dynamic AOP [4, 17]:
the ability to add, modify and remove aspects at runtime. In atypical scenario, the
source code is not available and and it cannot be rewritten inan AOP version of Java.

42

Instead, the system must modify an existing application. The point cuts needed for
dynamic AOP usually include method invocations and (sometimes) field accesses. The
approaches used in prior work can be grouped into three categories:

– Use the debugger interface to intercept method invocations. The downside of this
approach is poor performance and a limited set of point cuts available (e.g., field
accesses may not be available).

– Modify the bytecodes via a custom class loader. While this implementation is flex-
ible, its performance is a problem since each potential point cut must be instru-
mented and a check must be performed at runtime to determine if a given point cut
is active. Bytecode instrumentation of every point cut cannot be made as cheap as
custom solutions.

– Modify the JIT to emit appropriate code. This approach offers the best performance
but it requires potentially cumbersome modifications to theJIT.

The use ofLIL allows dynamic AOP to be implemented with the same performance
as the latter solution, but without the need to modify the JIT. The VM can use data
structures to keep track of dynamic aspects. These data structures can then be consulted
to generate the appropriateLIL sequences for each method invocation and field access.

4.2 Multiple Inheritance and Mixins

Changing the type inheritance model affects type instantiation, type casts, field ac-
cesses, and method invocation. Since all these actions are implemented through im-
plantedLIL sequences, any changes needed to support a new inheritance model are
confined within the VM. The rest of this section describes howmultiple inheritance,
mixins, and extensible objects can be supported using this system.

Classic Multiple Inheritance The easiest way to implement multiple inheritance is
the one followed by most C++ compilers. That is, each base class instance begins at
a certain offset from the start of the object. Each base classinstance also has its own
vtable pointer, which differs from the object’s vtable pointer by a certain offset.7 If this
implementation is followed, then only the stubs for type casts need to change. Instead
of just returning its argument, an upcast stub would now lookas follows:

entry 0:managed:ref:ref;
r=i0+BASE_OFF;
ret;

whereBASEOFF is the offset of the requested base class’s instance within the object.
Downcast stubs must change in a similar but opposite way.

7 This implementation slightly complicates garbage collection, since references now do not nec-
essarily point to the start of an allocated object. This problem can be solved, although the
details are too technical to include here.

43

Mixins As explained by Flattet al. [11], implementing mixin-style inheritance may
require “boxing” some references. That is, a mixin-typed reference is implemented as
a pointer to a structure that contains a pointer to an actual object as well as field and
method translation tables (and possibly other information). These tables map field and
method names into the offsets within the object and vtable respectively. Casts from
normal class types to a mixin type must create the boxed reference, whereas casts from
mixin types to a normal class type must retrieve the underlying object and discard the
outer structure. Field accesses and method invocations through mixin references require
looking up the field or method name in the translation tables.Clearly the VM can make
LIL stubs for casts, field access, and method invocation that match this scheme; we omit
the details.

Extensible Objects Some object-oriented languages such as Python allow the user to
dynamically add fields to an object at runtime. A simple implementation has a list of
dynamic field names and values in each object. If a JIT requests a field not statically
declared in a type, then the VM generates a stub to search the dynamic field list of the
object. If a requested field is not found in the dynamic field list, the stub can either
throw an exception or create the field depending upon the desired language semantics.
The VM can also provide the JIT withLIL stubs for dynamic field addition operations.
Clearly, optimizations of this simple scheme are also expressible usingLIL stubs.

4.3 Functional Programming

It is well known that functions, especially first-class functions in functional program-
ming languages, are equivalent to objects with a single method [12]. Function appli-
cation becomes invocation of the single method. The VM can present functions and
function types to a Java JIT as if they were objects. The method invocation sequence
shown in Section 2 results in two loads and a call for a function application. Typical
implementations of functional programming languages haveonly one load and a call.
The extra load could degrade performance. To avoid it, the VMcould store the code
address directly in the function, say immediately after thevtable.8 Then if a Java JIT
requests a virtual dispatch on a function type, the VM can generate aLIL sequence that
loads the code pointer directly from the function, such as the following (for a function
of no arguments or returns):

entry 0:managed:ref:void;
locals 1;
ld l0,[i0+4:pint];
tailcall l0;

Functional programming languages also have features like polymorphism, discrim-
inated unions, and lazy evaluation that are quite differentfrom typical object-oriented

8 In typical implementations of functional programming, there is no vtable, but instead there is
a header word used by the garbage collector. In ORP, there is no header word, and instead the
information contained in the header word is stored in the vtable. Thus the space requirements
are the same.

44

features. For example, polymorphism in these functional programming languages is re-
lated to generics in object-oriented languages. These features might need different ob-
ject models, field access sequences, and method invocation sequences. As an example
of the latter, thunk creation and forcing for lazy evaluation could be hidden in method
invocation code that crosses from Java to lazy functional code. We speculate that these
differences could be hidden from the JIT usingLIL.

5 Conclusion

Extending existing virtual machines to support new object models and programming
paradigms is difficult because knowledge about the object model is spread across many
components and modules. Such knowledge includes how field accesses, method invo-
cations, down casts, and up casts should be implemented. This paper has shown how
to address this problem without sacrificing performance. The solution is to concentrate
knowledge of the object model in the core VM component, and touse code implants to
inline performance critical operations into JIT-generated code and other components.
Then implementing new object models or programming paradigms requires changes to
a small part of the system only.

We originally designedLIL to provide CPU-independence and better maintainabil-
ity of stubs within ORP. We were pleasantly surprised when werealised that it could
also be used to implement a code implant system and thus achieve better modularity for
ORP with the same performance.

While we have investigated code implants forcheckcast andinstanceof in
ORP, much more work remains before ORP will be a platform for multiparadigm ex-
periments. Many other opportunities remain for the use of code implants. Future work
will explore these possibilities.

45

Bibliography

[1] A.-R. Adl-Tabatabai, J. Bharadwaj, D.-Y. Chen, A. Ghuloum, V. Menon, B. Mur-
phy, M. Serrano, and T. Shpeisman. The StarJIT Compiler: A Dynamic Com-
piler for Managed Runtime Environments.Intel Technology Journal, 7(1), Feb-
ruary 2003. Available athttp://intel.com/technology/itj/2003/
volume07issue01/art02 starjit/p01 abstract.htm .

[2] A.-R. Adl-Tabatabai, M. Cierniak, G.-Y. Lueh, V. M. Parikh, and J. Stichnoth.
Fast, Effective Code Generation in a Just-In-Time Java Compiler. Proceedings of
the SIGPLAN ’98 Conference on Programming Language Design and Implemen-
tation, June 1998.

[3] B. Alpern, A. Cocchi, and D. Grove. Dynamic Type Checkingin Jalapeño.Pro-
ceedings of the Java Virtual Machine Research and Technology Symposium (JVM
’01), April 2001.

[4] J. Baker and W. Hsieh. Runtime Aspect Weaving Through Metaprogramming.
Proceedings of the International Conference on Aspect-Oriented Software Devel-
opment, April 2002.

[5] A. Bik, M. Girkar, and M. Haghighat. Experiences with JAVA JIT Optimization.
International Workshop on Innovative Architecture for Future Generation High-
Performance Processors and Systems, October 1998.

[6] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. Open Run-
time Platform: A Flexible High-Performance Managed Runtime Envi-
ronment. Intel Technology Journal, 7(1), February 2003. Available at
http://intel.com/technology/itj/2003/volume07issue0 1/
art01 orp/p01 abstract.htm .

[7] M. Cierniak, G.-Y. Lueh, and J. Stichnoth. Practicing JUDO: Java Under Dynamic
Optimizations. Proceedings of the SIGPLAN ’00 Conference on Programming
Language Design and Implementation, June 2000.

[8] N. H. Cohen. Type-extension type test can be performed inconstant time.ACM
Transactions on Programming Languages and Systems, 13(4), October 1991.

[9] Eclipse.org. AspectJ Project, 2003. Available athttp://eclipse.org/
aspectj .

[10] ECMA. Common Language Infrastructure. ECMA, 2002. Available
at http://www.ecma-international.org/publications/
Standards/ecma-335.htm .

[11] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. InThe 25TH
ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLanguages,
San Diego, California, pages 171–183, New York, NY, 1998.

[12] N. Glew. Object closure conversion. In A. Gordon and A. Pitts, editors,3rd
International Workshop on Higher-Order Operational Techniques in Semantics,
volume 26 ofElectronic Notes in Theoretical Computer Science, Paris, France,
Sept. 1999. Elsevier. Available athttp://www.elsevier.nl/locate/
entcs/volume26.html .

46

[13] D. Grune, H. E. Bal, C. J. H. Jacobs, and K. G. Langendongen. Modern Compiler
Design. Wiley, 2000.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ.Lecture Notes in Computer Science, 2072:327–355, 2001.

[15] T. Lindholm and F. Yellin.The Java Virtual Machine Specification, Second Edi-
tion. Addison-Wesley, 1999.

[16] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In
Proceedings of the 24th ACM Symposium on Principles of Programming Lan-
guages, Paris, France, Jan. 1997.

[17] A. Popovici, G. Alonso, and T.Gross. Just In Time Aspects: Efficient Dy-
namic Weaving for Java.Proceedings of the International Conference on Aspect-
Oriented Software Development, March 2003.

[18] Standard Performance Evaluation Corporation. SPEC JVM98, 1998. Seehttp:
//www.spec.org/jvm98 .

[19] J. Vitek, R. N. Horspool, and A. Krall. Efficient type inclusion tests.ACM SIG-
PLAN Conference on Object-oriented Programming Systems, Languages and Ap-
plications, October 1997.

[20] D. Wakeling. Compiling lazy functional programs for the java virtual machine.
Journal of Functional Programming, 9(6), November 1999.

47

48

The ConS/* Programming Languages

Matthias M. Hölzl

hoelzl@informatik.uni-muenchen.de
Institut für Informatik

Ludwig-Maximilians Universität München
Oettingenstraße 67
80538 München

Abstract. The ConS/* family of languages extends object-functional languages
like Common Lisp, Dylan or Scheme with facilities for “non-deterministic” com-
putation and constraint solving. Integration of constraint solving is achieved with-
out changing the evaluation mechanism of the underlying base language; ConS/*
achieves close integration between the base language and constraint solving by
providing parametric backtracking, first-class constraints and generic built-in op-
erators.

1 Introduction

Languages that offer a single programming paradigm often have a simple conceptual
model and nice theoretical properties. On the other hand, experience shows that no
single programming paradigm is suitable to solve all programming problems with equal
conciseness and clarity.

Currently, many programs are written in object oriented languages since these lan-
guages seem to offer a good compromise for most application areas. For certain appli-
cation domains, however, other paradigms provide significant advantages. For example,
Constraint Logic Programming (CLP) is an established declarative programming para-
digm that is very well suited to many kinds of optimization problems.

It is therefore not surprising that various languages try tointegrate more conven-
tional programming paradigms with constraint-solvers. These languages can roughly
be divided into two groups. Languages in the first group modify the argument-passing
mechanism of function or method applications: If a functionis applied to an argument
which is not completely determined, the computation eithersuspends (the so-called
residuationprinciple) or non-deterministically assigns a value to thevariable (narrow-
ing). Most of these languages are based on a functional core, forexampleCurry [2]
or Babel [10]. Languages in the second group add constraint-solvingextensions as a
sub-language to a functional or object oriented language. This approach can be found
in non-deterministic Lisp[12, 13], as implemented by theScreamerpackage [14], the
programming languageAlice [18, 19], theJava Constraint Kit (JCK)[1] or the the
ILOG SolverandOptimization Suiteproducts [6, 5].

The two groups of languages differ markedly in the programming-style that they
support naturally. In general, languages in the first group tightly integrate constraint
solving into their base language. In general this leads to languages that offer seamless

49

integration between the different programming paradigms.The disadvantage of this ap-
proach is that the complex evaluation model of logic programming languages is carried
over into the base language and that many features that are essential to object oriented
languages (e.g., mutation) are difficult to support. Languages in the second group re-
quire the programmer to chose for each subproblem of the program whether to solve it
in the base language or in the constraint sublanguage. On theother hand they often offer
more possibilities for compiler optimization and, more importantly, a simpler execution
model.

We present theConS/* family of languages. The languages in theConS/* family
are based on constraint-functional languages; they retainthe simple argument-passing
and evaluation model of object-oriented or eager functional languages, but integrate
backtracking and constraint-solving as tightly as languages based on residuation or nar-
rowing. This is achieved by adding“non-deterministic computation”1 andfirst-class
constraintsto the language, and by extending the built-in special-operators and func-
tions to handle constraints in the appropriate manner. Since most facilities inConS/*
offer ameta-object protocol[9], they can be customized and extended by the user. The
language facilities described in this paper can be added to different object-oriented lan-
guages; for concreteness we focus onConS/Schemein the rest of the paper.

This paper is organized as follows: In the next section we present an introductory
example that shows how the new features can be used to “reverse” the computation of
a program. In the third section we give a short introduction to the core language and its
object system. We then show very briefly how an object-oriented protocol can be used to
specify search and solution strategies, and how the same search-protocol can be used as
meta-object protocol to control the backtracking behaviorof the language. We proceed
to describe how most “built-in” facilities can be expressedusing generic-functions and
how this approach leads to a natural integration of constraints into the language.

2 An Example Program

To illustrate the constraint mechanism we show how an example program that is written
in straightforward object oriented style can be used to compute input arguments that
result in a desired outcome of the program. The program is modeled after an example
in [11]; a constraint-functional translation that is closer to the original is given in [4]. It
computes the balanceB of a mortgage with principalP , afterT years, if the interest
rate isI and the annual repayment isR. Figure 1 shows a Java class that computes the
balance of the mortgage, Figure 2 shows the correspondingConS/Schemeprogram.

This example shows that there are several differences between ConS/Schemeand
Java. The most obvious difference is thatConS/Schemeis written in prefix notation
whereas Java uses a more conventional algebraic (infix) syntax. Another difference is
that inConS/Schememethods do not “belong to” classes and have no implicitthisargu-
ment. Instance variables are usually accessed by callinggettermethods. In principle the

1 The term “non-deterministic” computation is actually a misnomer since the computation pro-
ceeds in a completely determined fashion. Since this usage is common in the CPL-literature
we also use it in this paper.

50

class Mortgage {
private double principal = 10000.0;
private double interestRate = 0.05;
private double repayment = 1000.0;

double balance(int time) {
if (time >= 0) {

double result = principal;
for (int i = 0; i < time; i++) {

result += result * interestRate - repayment;
}
return result;

}
else

throw(new RuntimeException("Negative time?"));
}

}

Fig. 1. Java class for the mortgage example.

(define-class <mortgage> (<object>)
((principal :init-keyword :principal

:initform 10000.0
:accessor principal)

(interest-rate :init-keyword :interest-rate
:initform 0.05
:accessor interest-rate)

(repayment :init-keyword :repayment
:initform 1000.0
:accessor repayment)))

(define-method balance ((mortgage <mortgage>) time)
(if (>= time 0)

(let ((result (principal mortgage)))
(dotimes (i time)

(inc! result (- (* result (interest-rate mortgage))
(repayment mortgage))))

result))
(error "Negative time?"))

Fig. 2. ConS/Schemeprogram for the mortgage example.

51

techniques developed in this paper could be implemented in aversion of Java in which
some constraints of the type system are relaxed.

It is clear that the programs are semantically equivalent: Both programs define a
class that contains instance variables for the principal, interest rate and repayment of
the mortgage and a methodbalancethat computes the balance of the mortgage after a
certain number of years.

If we call theConS/Schemefunction balance with known quantities for its ar-
guments, say a mortgage withprincipal = 100, interest-rate = 0.05 and
repayment = 10, andtime = 1 it will compute the balance after one year. The op-
erational behavior of the program is similar to the Java program:Balance evaluates
the term(>= time 0) with time bound to1. This results in the valuetrue , there-
fore evaluation proceeds with the first clause of theif statement. This clause binds the
variableresult to the value of theprincipal instance variable of the mortgage. It
then binds the loop variablei to 0 and evaluates the loop body. After the first evaluation
of the body, the condition of the loop is tested again; this time the test fails, therefore
evaluation continues after the loop and returns the value ofresult to the caller.

There is one important difference between both programs given here and the original
constraint logic version in [11] (apart from the obvious syntactic one): The constraint
program describes arelation between its arguments while the Java andConS/Scheme
programs compute afunctionfrom their arguments to results.

We can therefore use the constraint-logic version of the program to answer other
questions than the balance given a mortgage and a time. If, for example, we want to
know the time we have to wait until we have a balance of95 when starting with a
principal of100, an interest rate of0.05, and a repayment of10, the Java program is no
longer able to compute an answer while the constraint program answersT = 1. In the
following paragraphs we show how theConS/Schemeprogram can answer this question
as well: InConS/Schemethe query that asks for a given balance can be written as

(begin
(= (balance mortgage ?T) 95)
?T)

which is expanded to a program similar to the following:

(let * ((t (constraint-variable))
(x (balance mortgage t)))

(add-constraint (= x 95))
(determined-value t))

This program computes its result in the following way:
First the variablet is bound to a fresh constraint variableT , then the function

balance is called with an instance of the class<mortgage> and the newly created
variableT . Since function application is defined in the usual way, we now evaluate
the body of thebalance function with mortgage bound to the mortgage instance
and time bound to the constraint variableT passed as argument. This means that
we evaluate the term(>= time 0) . At this point we encounter the first difference
from the usual functional evaluation model: Comparison functions like = or >= are

52

defined for arguments which are constraint-variables and their semantics is extended
in the following way: If >= is applied to “known” values like numbers or strings, it
evaluates to eithertrue or false . If, however, one of its values is a constraint variable
it evaluates to aconstraint, in this case to the constraintT ≥ 0. The behavior of the
special operatorif is polymorphic as well: If its argument is a known value it evaluates
one of the branches; if its first argument evaluates to a constraint C , the if -operator
evaluatesboth branches non-deterministically. In the consequent branch, C is added
to the constraint store before the forms in the branch are evaluated, in the alternative
branch,¬C is added to the constraint store.

Proceeding with our example, to evaluate the consequent of the if -form, the con-
straintT ≥ 0 is added to the constraint store. The variableresult is then bound to
the value of theprincipal instance variable of the mortgage. Since thedotimes
loop is just an abbreviation for a statement of the form

(let ((i 0))
(loop

(if (= i time)
(exit-loop)
<do the body of the loop and increment i>)))

we have to evaluate anotherif form. Sincetime is bound to a constraint variable, the
expression(= i time) returns a constraint, and, as before, theif -operator evalu-
ates both branches. To evaluate the first branch we add the constraintT = 0 to the
constraint store; therefore evaluation proceeds by exiting the loop and returning the
value ofresult to the caller ofbalance . At this point the variablex in the let * -
form is bound to100. In the next step we add the constraint100 = 95 to the constraint
store and this path of the computation fails.

The program then proceeds to evaluate the alternative of theif -form. Incrementing
the result variable and the loop counteri proceeds in the normal manner since all
subcomputations return deterministic values. In the next iteration the above process is
repeated with the constraintT = 1 added to the constraint store. In this case evaluation
of the first branch exits the method with value95; the constraintx = 95 is true, and the
value1 of T is returned. If we tried to search for further values the program would loop
indefinitely.

This example demonstrates the facilities which allow the seamless integration of
constraints into the functional core-language: First-class constraints (and constraint-
variables), a facility for non-deterministic evaluation (backtracking) and polymorphic
versions of the built-in functions which take constraints into account. With these
additions to the language, functional programs can be used transparently in non-
deterministic computations. The example also demonstrates that we have unfortunately
introduced one of the problems that is common to all constraint languages intoCon-
S/Scheme: It is easy to inadvertently write programs that run into infinite loops.

3 The Object-Functional Core

All facilities provided byConS/Schemeare implemented in terms of a small set of pow-
erful constructs.ConS/Schemeis based on theGauche[7] dialect of Scheme [8], which

53

offers a flexible object system with multiple inheritance and multiple dispatch. In the
next subsections we give a short description of the syntax and some important features
of Gauche. This introduction covers only a few topics and glosses over many important
details. A more detailed description of object systems thatare based on multimethods
given, e.g., in [15].

3.1 The Base Language

Like most Lisp dialects, and unlike most other languages,ConS/Schemehas two rep-
resentations for programs: Programs inexternal representationare sequences of char-
acters in a file. Programs inexpression syntaxare represented by objects of the pro-
gramming language; the most important aspect of this is thatthe program structure is
represented by nested lists. If the first element of a list representing a program is one
of a few special symbols (calledspecial operators), the form follows special evaluation
rules and is called aspecial form. Macros can be used to rewrite list representations of
programs. In [20] Steele and Sussman show that most programming constructs can be
defined with macros and a small programming language core.

3.2 The Object System

The Gauchedialect of Scheme, on whichConS/Schemeis built, contains a powerful
generic-function based object system. Classes define the structure of objects, instances
of classes contain instance variables (calledslots). By convention class names are en-
closed in angle brackets, e.g.,<a-class> , this has no semantic consequences.

In contrast to more conventional object-oriented languages a class (usually) contains
no behavior in the form of methods, instead behavior is contained in generic functions.
A generic functionis a function whose behavior depends on properties of its arguments,
most commonly the class of one or more arguments.

The behavior of a generic function is implemented bymethods. A method defini-
tion in ConS/Schemeis similar to a method definition in an object oriented language.
Since method definitions are not textually nested in class definitions and thethispointer
has to be explicitly specified method definitions look syntactically similar to function
definitions in functional programming languages.

4 Parametric Search

4.1 Search Strategies and Value Collectors

Some logic programming languages, e.g.,Prolog, fix the order in which non-determi-
nistic computations are evaluated. If this built-in search-strategy is not suitable for some
application, the whole program has to be rewritten to implement the desired behavior.
Therefore many modern logic programming languages allow a programmatic specifi-
cation of the evaluation order in terms of asearch protocol.

ConS/Schemeuses a search protocol to control the backtracking behavior. This pro-
tocol is based on the search strategies presented in [16]. In[16] the search strategies

54

are used to search tree-like data-structures composed ofnodes. In ConS/Schemethe
applicability of the search protocol is extended to the control of the backtracking mech-
anism. A more detailed description of the search protocol isgiven in [4, 3].

Most logic programming languages provide the user with special predicates that
control how many values of a computation should be computed and returned. InCon-
S/Schemethe user can define these predicates by implementing avalue collectorthat
controls the interface between non-deterministic computations and the surrounding de-
terministic context. Details can again be found in [4, 3].

5 Backtracking Search

The backtracking search mechanism consists of the single primitive
either-fun , and two global parameterscurrent-search-strategy
and current-collector . A denotational semantics ofConS/Schemeis given
in [4]. Intuitively, either-fun creates achoice point, and proceeds to evaluate
one branch of the computation space. Which branch is initially taken, and where the
computation is resumed after a branch fails or delivers a result is controlled by the two
strategies. All other functions are implemented in terms ofthese primitives.

The functioneither-fun takes a variable number of nullary functions as argu-
ments (these functions are also calledthunks). It arranges for these functions to be called
with the continuation which was current at the timeeither-fun was called. We call
these combinations of functions and continuations thenodesof theprogram tree. Back-
tracking is invoked by either returning a value from a branchof the computation tree
if the computation was successful or by calling the functionfail to abort the current
branch.

The macroeither provides some syntactic sugar on top ofeither-fun :

(either form ...)

is syntactically equivalent to

(either-fun (lambda () form) ...))))

The macrorun provides a mechanism to change the search strategy and valuecollector
for some part of the computation.

As first example for the use of non-deterministic operations, consider the following
program

(run ((all-values-collector) (depth-first-search))
(either 1 2 (either ’a ’b ’c) 3))

The either -form defines a non-deterministic computation that branches into nodes
evaluating to 1, 2, a nested non-deterministic computationand 3. The nested compu-
tation branches into three nodes evaluating toa, b and c . Evaluating this tree with
an all-values-collector and depth-first-search returns the list (1 2 a b c 3) . If the
program were changed to use breadth-first-search as search-strategy, the returned re-
sult would be(1 2 3 a b c) . The returned values can be chosen by changing the

55

value-collector: if an instance of the class<one-value-collector> was used,
the single value1 would be returned (and the non-deterministic computation would
not proceed after producing the first value), if an<all-symbol-collector> was
used, the result would be(a b c) , a<maximum-integer-collector> would
return3.

It is also possible to define non-deterministic functions. One simple example is the
following:

(define (a-boolean)
(either #t #f))

This function non-deterministically returnstrue andfalse . The values computed by
a call to the function are again collected by a value collector and the result is returned
as the result of the computation:

(if (a-boolean) 1 2)

This program returns the list(1 2) . It is again possible to use different search-
strategies and value collectors. Definitions of non-deterministic functions can also be
recursive. The function

(define (an-integer-above m)
(either m (an-integer-above (+ m 1))))

successively returns all integers larger than its argument.
Computations that cannot continue can be aborted by callingthe functionfail .

This causes the current branch of the program tree to be removed without providing a
value. Thus the program

(run ((all-values-collector) (depth-first-search))
(either 1 (fail) 2 3 (fail)))

evaluates to(1 2 3) . The following expression

(either (begin (display "one") 1)
(begin (display "two") (fail) (display "still two") 2)
(begin (display "three") 3))

prints"one" "two" "three" and returns(1 3) . We can therefore define

(define (an-integer-between min max)
(if (> min max)

(fail)
(either min (an-integer-between (+ 1 min) max))))

Since this function recurses in theeither form, the evaluation tree is binary, with
a value as left child and a non-deterministic computation asright child of all nodes but
the rightmost one. To get a balanced tree another definition would be more appropriate,
e.g.,

56

(define (an-integer-between min max)
(cond ((< max min) (fail))

((= max min) min)
(else (let ((result (quotient (+ min max) 2)))

(either result
(an-integer-between min (- result 1))
(an-integer-between (+ result 1) max))))))

6 Integration of Constraints

With generic functions and non-deterministic computations at our disposal, the inte-
gration of constraints is relatively straightforward. Most special operators of the core
language are defined as macros. In contrast to the expansionsgiven in [20], most macros
in ConS/Schemeexpand into generic functions. This allows users of the language to ex-
tend the behavior of special operators. Therefore the constraint system can be defined
on the “user level” of the language, without access to internals of the implementation.

To implement the constraint system we define classes
<constraint-variable> and <constraint> and add appropriate meth-
ods to the already defined generic functions. The evaluationand binding operations of
the base language remain unchanged, in particular it is not possible to bind constraint-
variables to values. (It is, of course, possible to bind variables to constraint-variables
and to constrain a constraint-variable to a single value).

Constraint-variables have a slot that describes the current set of values. If new con-
straints are propagated, the value of this slot is modified.

The generic definitions of most operators are straightforward. For example the func-
tion + may be defined as follows:

(define-method + ((x <number>) (y <number>))
(%primitive-+ x y))

(define-method + ((x <constraint-variable>) (y <number>))
(let ((result (make <constraint-variable>)))

(add-constraint
(make <sum-constraint> :lhs x :rhs y :result result))

result))
(define-method + (x (y <constraint-variable>))

(let ((result (make <constraint-variable>)))
(add-constraint

(make <sum-constraint> :lhs x :rhs y :result result))
result))

In ConS/Schememost control structures are defined in terms of a small set of prim-
itive operations, likelambda -abstractions and function applications. There are no spe-
cial operators that implement conditionals or control-flowmanipulation, all these oper-
ations (exceptcall/cc) are implemented in a library. To illustrate this point we show
the definition of the “special operator”if :

57

We implementif as a macro that builds thunks for the consequent and alternative
branches of the conditional and then calls a generic function eval-if to dispatch
on the value of the predicate. Note that the body of theeval-if function calls the
appropriate thunk to perform the evaluation of a single branch. If the predicate of a
conditional evaluates to a constraint, both branches are evaluated non-deterministically
by the third method.

(define-macro (if pred con . alt)
‘(eval-if ,pred

(lambda () ,con)
(lambda () ,(if (null? alt) #f (car alt)))))

(define-method eval-if (pred con alt)
(con))

(define-method eval-if ((pred <false>) con alt)
(alt))

(define-method eval-if ((pred <constraint>) con alt)
(either (begin (add-constraint pred) (con))

(begin (add-constraint (negate pred)) (alt))))

7 Interaction with Imperative Features

The integration of non-deterministic computation and the functional subset ofCon-
S/Schemeresults in a satisfying combination of functional and constraint-based pro-
gramming. This is, however not always the case if imperativefeatures of the language
are used. The main problem is the following: If a branch of thecomputation tree per-
forms a side-effect, should this effect be reversed if the branch terminates or not? It is
evident that there is no “right” answer to this question.

This problem can be clearly seen in the implementation of theconstraint solver:
Each constraint variable contains a slotdomain that holds information about the pos-
sible values under the current set of constraints. If new constraints are added, this slot
is modified destructively. It is clear that all modificationsmade in a particular branch of
the program tree have to be undone when the control flow leavesthis branch. However,
since the control flow of the program can be controlled by search and value strategies
there is no simple stack discipline for performing these undo-operations. Furthermore,
it is possible that a branch of the program tree is resumed after some of its side-effects
have been undone; in this case the side effects have to be redone.

We currently have no automated solution for this problem. Inthe actual implemen-
tation ofConS/Schemetheeither-fun function takes two additional thunksbefore
andafter as arguments. Thebeforethunk is evaluated every time when the control flow
enters the branch of the program tree dominated byeither-fun , the after thunk
is evaluated each time the control flow leaves this region. This solution allows the pro-
grammer to correctly manage the state even if search strategy repeatedly switch between
different branches of the program tree. However a more elegant and less error-prone so-
lution to this problem is desirable.

58

8 Conclusions and Further Work

We have shown that the combination of non-deterministic computation with a language
based on generic-functions leads to a language that offers seamless integration of three
important programming paradigms: object-oriented, functional and constraint-based.
The resulting languageConS/Schemeoffers simple operational and denotational seman-
tics but provides the same expressive power as other constraint-functional languages.
The prototype ofConS/Schemeis implemented on top of Gauche-Scheme.

There are some significant optimization opportunities thatwe would like to explore
in the future: The most important bottleneck is the search protocol which relies heavily
on generic function dispatch. In most programs the specific methods called could be
determined statically and therefore most of the overhead ofthe protocol could be elimi-
nated. It would be interesting to investigate possibilities to optimize the implementation
of ConS/Schemeto eliminate most generic function calls [17].

We have already mentioned some unresolved problems when destructive modifica-
tions are performed in non-deterministic computations. While ConS/Schemeprovides
facilities that allow the programmer to write programs thatwork correctly when side-
effects are performed in non-deterministic computations,this takes more effort than it
should. The most likely approach to solve this problem seemsto be by adding a trans-
action concept to the language.

AcknowledgmentsI would like to thank Professor Martin Wirsing for his continuing
support. Parts of this work were developed while I was staying at Monash University,
Melbourne, on invitation of Professor John N. Crossley.

59

Bibliography

[1] Thom Frühwirth, Web page: http://www.pms.informatik.
uni-muenchen.de/software/jack/index.html accessed 2. oc-
tober 2003.

[2] Michael Hanus,Curry, an integrated functional logic language, University
of Kiel, Germany, 0.7.1 ed., June 2000, See also the URLhttp://www.
informatik.uni-kiel.de/ ∼curry/ , accessed 29 October 2001.

[3] Matthias M. Hölzl,ConS/Lisp—a mop-based non-deterministic lisp, Proceedings
of the International Lisp Conference (Raymond de Lacaze, ed.), 2002.

[4] , Constraint-functional programming based on generic functions, Work-
shop Proceedings: MultiCPL’02: Workshop on MultiparadigmConstraint Pro-
gramming Languages (Michael Hanus, Petra Hofstedt, Slim Abdennadher, Thom
Frühwirth, and Armin Wolf, eds.), September 2002.

[5] ILOG, Web page for ILOG solver:http://www.ilog.com/products/
solver/ accessed 29 october 2001.

[6] , Web page for the ILOG optimization suite:http://www.ilog.com/
products/optimization/ accessed 29 october 2001.

[7] Shiro Kawai, Web page for gauche:http://www.shiro.dreamhost.
com/scheme/gauche/, accessed 2. october 2003.

[8] R. Kelsey, W. Clinger, and J. Rees,Revised5 report on the algorithmic language
scheme, Higher-Order and Symbolic Computation11 (1998), no. 1.

[9] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow, The art of the metaob-
ject protocol, The MIT Press, 1991.

[10] Rita Loogen,Integration funktionaler und logischer programmiersprachen, Old-
enburg, 1995.

[11] Kim Marriott and Peter J. Stuckey,Programming with constraints — an introduc-
tion, The MIT Press, 1998.

[12] David McAllester,Lifting, November 1992, Lecture Notes for 6.824, Artificial
Intelligence.

[13] David McAllester and Jeffrey Mark Siskind,Nondeterministic Lisp as a substrate
for constraint logic programming, Proceedings AAAI, July 1993, pp. 133–138.

[14] , Screamer: A portable efficient implementation of nondeterministic Com-
mon Lisp, Tech. report, University of Pennsylvania, Institute for Research in Cog-
nitive Science, 1993, IRCS-93-03.

[15] Kent M. Pitman (ed.),Information technology — programming language — com-
mon lisp, ANSI Standard, no. ANSI X3.226–1994, American National Standards
Institute, 1994.

[16] Stuart Russel and Peter Norvig,Artificial intelligence, a modern approach, Pren-
tice Hall, 1995.

[17] Olin Shivers, Control-flow analysis of higher-order languages, Ph.D. thesis,
Carnegie Mellon University, May 1991, CMU-CS-91-145.

[18] Gert Smolka,Web page for theAlice programming language:http://www.
ps.uni-sb.de/alice/, accessed 29 october 2001.

60

[19] , Concurrent constraint programming based on functional programming,
Proceeding of the European Joint Conferences on Theory and Practice of Software
(ETAPS), 1998.

[20] Guy Lewis Steele Jr. and Gerald Jay Sussman,Lambda the ultimate imperative,
Tech. Report AI Memo 353, Maddachusetts Institute of Technology, Artificial In-
telligence Laboratory, March 1976.

61

62

Functional versus OO Programming:
Conflict Without a Cause

DeLesley Hutchins

CISA, School of Informatics, University of Edinburgh
Appleton Tower, 11 Crichton Street,

Edinburgh, EH8 9LE, UK
+44 (0) 131 650 2732

D.S.Hutchins@sms.ed.ac.uk

Abstract. Despite some overlap, object-oriented and functional methodologies
are generally regarded as separate paradigms. OO programming is concerned
with classes and inheritance, whereas functional programming is concerned with
functions and function composition. I present a new object model which unifies
these paradigms. Classes are represented as higher-order functions, and inheri-
tance becomes a form of function currying. This unification results in a far sim-
pler and more flexible object model, and one which eliminatesseveral outstanding
problems with existing OO languages.

1 Introduction

Although they are generally presented as separate programming paradigms, functional
and object-oriented languages are closely intertwined. Each borrows concepts from the
other, to the extent that it is almost impossible to describeany language as being either
“pure functional” or “pure object-oriented”. This mingling can be most clearly seen in
mainstream OO languages: classes and interfaces are built from methods, and methods
are simply functions. Likewise, even the purest of functional languages, such as Haskell
or ML, use OO concepts. Functional programs must still deal with data types, and a
combination of subtyping (a.k.a. inheritance) and function overloading is sufficient to
mimick most OO constructs. Haskell provides a particularlypowerful mechanism for
dealing with classes and polymorphism that rivals any mainstream OO language on the
market. [8]

Nevertheless, this kind of intertwining can best be described as “peaceful coexis-
tence,” rather than a more meaningful marriage. Little attempt has been made to unify
the functional and OO paradigms into a single whole. In C++, for example, methods (i.e.
functions) and classes are regarded as completely different constructs. Classes can in-
herit from one another, but functions can not. Classes have constructors and destructors,
public and private methods, and they can be nested, all properties that C++ functions do
not have. Methods, on the other hand, can be declaredvirtual , and function pointers
can be passed as first-class objects at run-time. C++ does notsupport virtual classes or
class meta-objects.

Haskell has a similar set of limitations. Indeed, classes and functions are so differ-
ent from one another that there seems little point in unifying them. Classes are types;

63

their purpose is to label data structures with meta-information so that the code which
manipulates that data “knows” what kind of data it is dealingwith. Inheritance creates a
subtype relationship; it organizes a set of related classesinto categories, so that similar
types of data can be handled in a consistent way.

Functions serve a very different purpose. A function encapsulates a computation,
not a type. A function manipulates data; it does not label it or categorize it. Even OO
languages obey these principles – an instance of a class stores data, while methods
(a.k.a. functions) modify and interpret it.

Despite these obvious differences, there is a deeper symmetry between classes and
functions which has been largely ignored. Although they serve different purposes, the
computational mechanism by which classes and functions areimplemented is very sim-
ilar. An instance of a class and the activation record of a function are almost exactly the
same. When a class is instantiated, a new record is created inwhich the data members
(the slots) of the class are bound to actual values. The act ofcalling a function likewise
creates an activation record in which the arguments of the function are bound to values.
Both instances and activation records create a lexical context in which objects can be
referenced by name.

There are only two real differences between calling a function and instantiating a
class. A function has a function body, and it returns a value.This capability can be
easily implemented with class constructors. For example, here is the factorial function
implemented as a C++ class:

class F a c t o r i a l {
publ ic :

i n t n , r e s u l t ;
F a c t o r i a l (i n t n) : n (n) {

i f (n <= 1) r e s u l t = 1 ;
else r e s u l t = n∗ F a c t o r i a l (n−1). r e s u l t ;

}
} ;
F a c t o r i a l (3) . r e s u l t ; / / r e tu rns 6

This symmetry extends to other constructs as well. The factorial function can also be
implemented with C++ templates using a similar technique:

template < i n t N>

class F a c t o r i a l {
publ ic :

enum { r e s u l t = N ∗ f a c t o r i a l <N−1>:: r e s u l t } ;
} ;

class F a c t o r i a l <1> {
publ ic :

enum { r e s u l t = 1 } ;
} ;

Both the class and template implementations create a returnvalue by storing it as a
data member of the class. The class definition is a bit more straightforward, because a

64

function body can be emulated simply by placing code in the constructor. The template
must jump through a few extra hoops; it declares a compile-time expression with an
enum , and uses template specialization because C++ does not provide a compile-time
if statement. For the most part, however, these are merely implementation details.

In other words, C++ provides three completely different constructs: functions, classes,
and templates, which in this case do essentially the same thing. All three constructs cre-
ate a lexical scope in which named parameters can be bound to values. (I will use the
terms parameters, slots, arguments, methods, and members somewhat interchangeably
throughout this paper. I believe “parameters” to be the mostgeneral term; the others
have more specific connotations in various languages.) Since the lambda calculus al-
ready provides a mathematical formalism for binding named parameters, this raises an
obvious question: can the functional and object-oriented paradigms be unified?

The answer to this question is that not only can the two paradigms be unified, but
that such unification has considerable expressive power. For example, in most func-
tional and OO languages, only methods (i.e. functions) can be declaredvirtual and
overridden during inheritance. In C++, this is because onlyfunction pointers can be
stored in the virtual method table. In Haskell, it is becauseonly functions can be over-
loaded to handle polymorphic types. Yet the notion of a “virtual class” actually turns
out to be quite useful. Virtual classes not only provide an elegant mechanism for im-
plementing generic classes (i.e. C++ templates), they are apowerful tool for large-scale
programming. [13]

A single class encapsulates a set of interacting methods together with the data they
operate on, and allows the whole set to be extended, modified and reused by means
of inheritance. Unfortunately, most complex problems require more than once class.
With virtual classes, a set of interacting classes can likewise be encapsulated, and then
extended, modified and reused by means of inheritance. Virtual classes thus provide
much of the capability offered by components or aspect-oriented programming, [1] [12]
without any need to abandon standard OO concepts. I will discuss this and other issues
later on in this paper.

I will present my ideas for synthesis in the form of the Ohmu programming lan-
guage, an experimental language which is being developed atMZA Associates Cor-
poration.1 The Ohmu language provides only one construct: the structure, and one
operation: the structure transformation. Functions, classes, and templates, along with
function calls, inheritance, and instantiation, can all beemulated with structures and
structure transformations.

This paper is organized as follows. Section 2 introduces theOhmu object model,
which unifies functions and classes. Section 3 explores issues related to binding and
types. It explains why existing type systems are inadequate, and introduces the Ohmu
prototype model, which eliminates the distinction betweentypes and values. Section
3 also describes the similarity between function currying and OO inheritance. Sec-
tion 4 discusses lazy evaluation, meta-programming, and issues related to run-time and

1 This work is being funded by:
MZA Associates Corporation
2021 Girard SE, Suite 150, Albuquerque, NM 87106-3140
voice: (505) 245-9970 fax: (505) 245-9971 web: http://www.mza.com

65

compile-time. The Ohmu language depends on a partial evaluation engine to shift code
from run-time to compile-time, and track dependencies which are introduced by the use
of virtual types. Section 5 concludes with a discussion of how these concepts relate to
large-scale programming.

2 Synthesis

As I mentioned earlier, the most fundamental difference between classes and functions
is the fact that classes represent types, whereas functionsdo not. Every object must be
tagged with an identifying type, namely the class that created it, and the compiler uses
that information to make sure that programs are type-safe. Types may encode varying
amounts of information depending on the language, but in general a type describes the
structure of data within an object, and the valid operationsthat can be applied to that
data. In other words, the type or class of an object describesthe interface of that object.

Another important characteristic of classes is that they exist at the meta-level of pro-
gram specification. A class describes the general properties of a set of similar objects,
rather than the specific details of one particular object. Classes and types thus exist at a
higher level of abstraction than “real” objects and executable code. In most languages,
including Java, C++, and Haskell, types are not first-class objects, and they exist only
at compile-time.

The traditional view holds that while human programmers andcompilers must both
be aware of types in order to reason about program correctness, a running program
should only be concerned with “real” objects. Program fragments that do need to rea-
son about types are known as meta-programs, and they can be difficult to write because
they must essentially extend the operation of the compiler at compile time. C++ tem-
plates are perhaps the most notorious example of the difficulties involved with meta-
programming. [5]

Functions are much simpler than classes. A function has a type just like any other
object, but it is not a type in and of itself. There is no such thing as an instance of a
function. Functions do exist at run-time, and they are treated as first-class values in most
languages, even in OO and imperative languages like C++. Thepurpose of a function
is to encapsulate a particular computation into a reusable module.

Mathematically, a function is defined as a mapping from one set to another:

factorial : Z→ Z

add : Z× Z→ Z

Thefactorial function maps from the set of integers to the set of integers,while theadd
function maps from a pair of integers to a single integer. Note thatZ → Z is a type: it
describes the set of all functions that map integers to integers, whilefactorial itself is
an instance: a single function within that set.

There are many ways to define a type mathematically, but the simplest is to state
that a type is just a set — it is the set of all objects that have that type. There’sZ, the set
of integers,R, the set of floating point numbers, etc. More complex data structures can

66

be represented as the product of one or more simpler types, e.g.

Point = R× R

Line = Point×Point

If we define types as sets, however, then a function actually is a type. A function can
be represented as a relation between its domain and its range. A functional relation is a
subset of the product of the domain and the range, which satisfies the following criteria:
for every elementx in the domain, there exists one and only one element(x , r) in the
relation. The factorial function can thus be defined as:

factorial = {(0, 1), (1, 1), (2, 2), (3, 6), (4, 24) . . . (n,n!)} ⊂ Z× Z

According to this model, we can now define what it means to instantiate a function.
An instance of a function is an activation record for that function – a data structure
that contains both the bound arguments to the function, and the result of evaluating the
function with those arguments. This is exactly what the C++ class version offactorial
defines: it’s a class with two elements,n and result , and the constructor initializes
result to the appropriate value.

Mathematically speaking, there is no reason to distinguishbetween functions and
classes. Functions and classes are both types, and they can both be instantiated. This
property has not been exploited in other languages, most likely because it was not con-
sidered particularly useful. When a function is evaluated,we are generally only inter-
ested in the result, and the activation record is discarded immediately. Since activation
records do not persist, they need not have a type. C++, for instance, allocates all acti-
vation records on the stack, which means that the record has already been destroyed by
the time the function returns. Lisp and similar languages may keep such records around
as a lexical context for closures, but activation records are still not first-class values and
thus have no type.

If activation records are allowed to persist, however, thenthey can serve as in-
stances, and functions can consequently serve as classes. There is no need for a func-
tional language like haskell to define a separate mechanism for declaring data types.
From the opposite perspective, there is no need for an OO language like Java to define
a separate mechanism for declaring functions; classes can be used just as effectively.

The Ohmu language emualtes both classes and functions by with the Ohmustruc-
ture:

f a c t o r i a l : Struct { / / a f u n c t i o n
n : I n t e g e r ;
r e s u l t : i f (n == 0) then 1 else n∗ f a c t o r i a l (n−1);
new : bind (n) ;
i m p l i c i t c a l l : bind (n) = r e s u l t ;

} ;

Po in t : Struct { / / a c lass
x , y : F l o a t ;
r : s q r t (x∗x + y∗y) ; / / −− a method

67

t h e t a : atan2 (y , x) ; / / −− another method
new : bind (x , y) ;

} ;

x : f a c t o r i a l . new (3) . r e s u l t ; / / x = 6 sugar−f r ee
y : f a c t o r i a l (3) ; / / y = 6 wi th sugar
o r i g i n : Po in t . new (0 , 0) ; / / i n s t a n t i a t e a c lass

Here is the Ohmu definition for both a class and a function. Thebind command is
responsible for binding values to parameters; it essentially acts as a named construc-
tor, and it is declared with an ordered list of the names that it needs to bind. Unlike a
traditional function, an Ohmu structure seldom binds all ofits parameters. Some mem-
bers, such asr, theta, and result , are internal methods and do not need to be bound.
Structure parameters are also referenced by name, so they have no set order.

Thebind command thus specifies which parameters should be bound, andwhat the
order of arguments should be for binding them. It creates andreturns an instance of the
structure that it is declared in. Instantiation in Ohmu is called astructure transformation,
because it has somewhat different semantics than instantiation in other OO languages.

A bind declaration may optionally specify a result. This is a bit ofsyntactic sugar;
it keeps the programmer from having to put a. result after every function call. The
implicit keyword is another bit of sugar; it operates likeoperator () in C++, and elim-
inates the need to write out an explicit.new. Note thatnew here is not a keyword.
Ohmu supports named constructors, and whilenew is generally used by convention,
other names, such ascall in the example above, are perfectly legal.

This unification between classes and functions is not uniqueto Ohmu. It was orig-
inally developed as part of the Beta language. [14] In Beta, both classes and functions
are referred to aspatterns. Each pattern has an optional body which contains statements
that are evaluated when the pattern is instantiated. Ohmu structures differ somewhat in
that there is no real function body. Ohmu functions are instead treated as relations, and
the code which computes the result is stored as a named memberof the structure. Inci-
dentally, thePoint class above is also a relation — it calculatesr andtheta for every
x andy. As a result,Point can be used either as a class, or as a function that converts
from Cartesian to polar coordinates.

It should be noted that although Ohmu functions are really structures, the syntax
given above can be a bit unwieldy. The Ohmu standard library includes aFunction
macro that automates this process:

f a c t o r i a l : Function ((n : I n t e g e r) , I n t e g e r) {
i f (n == 0) then return 1
else return n∗ f a c t o r i a l (n−1);

} ;

This alternate syntax uses a more conventional statement list for the function body, but
it is otherwise equivalent to the earlier definition.

68

2.1 Single vs. Multiple Dispatch

Another major difference between OO and functional languages is the way they imple-
ment methods. In an OO language, methods are usually visualized as being part of the
object. They not only manipulate object data, they provide ahigh-level interface that
controls access to that data and guarantees object integrity. OO methods areoverridden
with new versions during inheritance in a way that closely resembles parameter binding.

In a functional language like Haskell or CLOS, the methods defined on a data type
are declared as external functions, and different versionsof a method are defined for
different derived types by means of functionoverloading. The advantage of this system
is that it supports multiple dispatch, a technique in which the types of all arguments
to a function are considered when determining which overloaded version to call. Most
OO languages rely on single dispatch, which only considers the type of the message
receiver.

The problems with single dispatch are well documented: it can be difficult to define
certain polymorphic operations for a set of related types using single dispatch. [4] A
classic example would be arithmetic operators such as+, ∗ and the like. Such operators
must be able to handle integers, floats, complex numbers, etc., and the types of all
arguments should ideally be considered when determining which version of+ to call.
Multiple dispatch also makes it easier to add new operationsto existing data types,
because the addition of new methods does not affect the classhierarchy.

The disadvantage of defining methods outside of the data typeis that object data and
the functions that manipulate that data are not encapsulated into one unit. There is no
longer a clear interface to a class other than the slots of thedata type itself, nor is it ob-
vious which methods need be overloaded to support new derived types. Single dispatch
makes it easier to define new classes with existing operations, whereas multiple dis-
patch makes it easier to define new operations on existing classes. Single dispatch also
gives an object much tighter control over its own integrity,since it is always obvious
which method will handle a particular message.

2.2 Higher Order Functions

The Ohmu language uses single dispatch for a different reason. Single dispatch allows
inheritance and instantiation to be unified into a single operation. OO languages have
traditionally used two different kinds of binding: instantiation binds data members to
values, while method overriding during inheritance binds new definitions to existing
methods. Even the Beta language maintains this distinction. Beta demonstrated that
functions and classes could be unified into a single construct, but it still provides two
operations; data members are bound to create instances, while methods and types are
bound to create derived classes.

The Ohmu language goes one step further. If methods are defined inside a class
then they become parameters of that class. If functions and classes are also two sides
of the same coin, then a class that declares internal methodsis analogous to a higher
order function. A higher-order function is one that acceptsother functions as arguments,
and/or returns another function as its result. By includingother functions and classes as
internal parameters, a class becomes a higher-order construct.

69

Functional languages have long supported higher-order functions; indeed, they are
one of the most powerful mechanisms provided by the functional programming par-
adigm. [8] Higher-order functions rely on the principle that functions are first-class
values which can be passed around at run-time just like any other object. Passing one
function as an argument to another is no different from passing any other value.

OO languages provide a special operation that only binds functions — namely in-
heritance. Yet if functions are first-class values, then there is no need for a separate
inheritance operation just to override methods. In fact, simple instantiation is enough to
implement virtual methods, even in C++:

class Number {
protected :

/ / s to re the add method as a f u n c t i o n p o i n t e r
typedef void (∗ opera t ion) (Number& s e l f , Number& n) ;
opera t ion add ;

publ ic :
/ / decent syntax f o r c a l l i n g add
i n l i n e void operator +=(Number& n) {

(∗add) (∗ th is , n) ;
}

Number(opera t ion a) : add (a) { }
} ;

class I n t e g e r : publ ic Number {
pr iva te :

i n t value ;
s t a t i c void add op (I n t e g e r & s e l f , I n t e g e r & n) {

s e l f . value += n . value ;
}

publ ic :
I n t e g e r () : / / i n i t i a l i z e the add member

Number(add op) , value (0)
{ }

} ;

The code above is a toy implementation of aNumber and Integer class. Instead of
using normal virtual methods,Number creates its own virtual method table by storing
pointers to functions in the object itself. Its behavior is equivalent to that of standard
virtual methods.

2.3 Higher Order Functions = Reusable Code

Stepping back a little, I wish to discuss briefly why both classes and higher-order func-
tions matter at all. Functions in general provide a convenient abstraction for performing

70

computations because the implementation of a function is completely hidden behind a
clear and well-defined interface. Mathematically, a function is just a relation between
two sets. It does not matter how a function arrives at a result, it matters only that it takes
values of one type, and maps them onto values of another type.

The downside is that because the implementation is completely opaque, there is
no way to modify or re-use parts of a function definition. Object-oriented languages
address this problem by means of block structure and inheritance. Unlike functions,
classes are not monolithic objects; a class consists of a group of interacting methods
which can be selected and overridden individually in derived classes. Virtual methods
act ashooks; they provide named locations where a base class can defer certain parts
of its implementation to its children, or where new functionality can be inserted into an
otherwise working system.

Functional languages provide an analogous mechanism for code reuse in the form
of higher-order functions. A higher-order function, like aclass, defers part of its im-
plementation to hooks – other functions that are passed as arguments. By attaching
different operations to the hooks, a whole family of relatedhigh-level functions can be
produced, just as a whole family of derived classes can be created by overriding the
virtual methods of a base class.

The classic example from functional languages is themap routine, shown here as it
is defined in Haskell:

map f [] = []
map f (h : t) = (f h) : (map f t) −− (h : t) = (head : t a i l)

map (∗2) [0 , 1 , 2 , 3 , 4] −− r e t u r n s [0 , 2 , 4 , 6 , 8]

Themap routine takes a functionf and a list(h: t) as arguments, and appliesf to every
element of the list, thus creating a new list. The OO equivalent of map is the iterator
design pattern, [7] which likewise hides the details of datastructure traversal:

L i s t : : i t e r a t o r i t = myList . begin () ;
L i s t n e w l i s t ;
fo r (; i t != myList . end () ; i t ++)

n e w l i s t . push back (i t . value () ∗ 2) ;

Both classes and higher-order functions share a common purpose. They structure code
in such a way that a general algorithm, in this case a data structure traversal, can be
glued together with third-party code, in this case an operation to be performed on each
element. What makes a language powerful is not the number or complexity of its con-
structs, but the “glue” that allows different constructs tobe combined. The Ohmu lan-
guage is an attempt to provide a better glue by treating all constructs in a uniform
manner.

2.4 Higher-Order Classes, a.k.a. Generics

Since Ohmu functions and classes also represent types, the analogue of higher-order
functions is higher-order types. A higher-order type is merely a type that is parameter-
ized by other types. In OO parlance, such types are referred to asgeneric classes.

71

Generic classes in C++ are implemented with templates:

template <class T>

class L i s t {
publ ic :

T head ;
L i s t <T>∗ t a i l ;

} ;

/ / c rea tes a new c lass −− l i s t s o f in tege rs
typedef L i s t <i n t > I n t e g e r L i s t ;

A C++ template can be viewed in several ways. On the one hand, atemplate acts as
a compile-time function that maps from types (or constants)to classes. On the other
hand, a template represents a type in and of itself. More accurately, templatesshould
represent types; it would be extremely helpful if the definition above declared a generic
type List , and if IntegerList was a specific instance of that type. That’s how Java
generics work. [3] Unfortunately, a C++ template cannot be used by itself; it must be
instantiated before it means anything at all. This was a major oversight in the design of
C++; templates are an excellent example of why it is useful for functions and types to
have a unified definition.

3 Prototypes

I have now discussed three different ways in which parameters can be bound. Data
members are bound to values during function calls or class instantiation. Methods are
normally overridden during inheritance, but they can also be bound during instantia-
tion so long as functions are treated as first-class objects.Type parameters are bound
during template instantiation. (It should be noted that type parameters are also bound
at compile-time rather than run-time, but I will ignore thatfor the time being; binding
times are discussed in Sec. 4.)

The astute reader will have noticed that I have not yet given any examples of type
and method binding in the Ohmu language. This is because the semantics of binding
data, functions, and types are all slightly different. C++ solves this problem by pro-
viding three different operations: instantiation, inheritance, and template instantiation,
but the Ohmu language only provides one operation, and that means that the semantics
must be unified.

When data parameters are bound, the binding moves from an abstract type dec-
laration, such asint or float , to a concrete value, such as7 or 3.14. A traditional
second-order function parameter does the same thing. It is declared as an abstract func-
tion type such asZ → Z, which represents a set of possible functions, and it is then
bound to a concrete function definition such asfactorial .

OO method overriding, on the other hand, may start out with a method that already
has a concrete definition, in which case the method isreplacedwith another that has
the same type. The semantics of object replacement are different from the semantics of
binding. Object replacement moves from value to value, whereas binding moves from
type to value.

72

The situation becomes even more confusing once we introducetemplate or generic
class parameters. A constrained class parameter, such as those provided by Java gener-
ics, [3] specifies a base class. Such a parameter can be bound to any derived class of
that base class. This, too, is different from data members. If a data member specifies a
class, it means that the data member can be bound to anyinstanceof that class, or any
instanceof a derived class. When a type parameter specifies a class, itmeans that the
parameter can be bound to derivedclasses, but not instances.

To summarize, the three forms that parameter binding can take are:

• Type to Value: e.g.int ⇒ 3
or int foo() = 0 ⇒ int foo() { . . .}

• Value to Value: e.g.int foo() { def #1} ⇒ int foo() { def #2}
• Type to Type: e.g.class Animal ⇒ class Dog

Another factor to consider is the fact that while both inheritance and instantiation
can be implemented with binding, they are used in different ways. Instantiation is a
“one shot” operation. It takes an abstract type declarationand creates an instance from
it. Once an instance has been created, everything in that instance is fully bound, and
definitions can no longer be re-bound.

Inheritance, on the other hand, is incremental. There may bea chain of derived
classes, each of which re-binds various methods. GUI toolkits often have quite deep
inheritance hierarchies, such as:

Object⇒Window⇒Widget⇒ Control⇒ Button

Each class in the chain will generally override key methods such asdraw() orhandleEvent()
in order to implement its behavior.

3.1 Prototypes Unify Classes and Instances

One way to allow incremental changes in a uniform manner is tocease distinguishing
between abstract types and concrete instances, and to definebinding in terms of ob-
ject replacement. If types are regarded as first-class objects, then this is a logical next
step. Binding an abstract type to a concrete value becomes a simple matter of replacing
one object: the type, with another object: the value. It doesnot matter whether the ob-
jects in questions are “types” or “instances”; we are simplyreplacing one object with a
different, yet compatible object.

Unfortunately, this confounds the traditional mechanism for determining which ob-
jects are “compatible,” i.e. the type system. A parameter can only be bound to an object
of the proper type; to do otherwise would violate the interface of the function or class.
If we treat parameters as ordinary objects, and “bind” them by performing object re-
placement, then we must replace the original parameter withone of the same type. This
is how standard OO inheritance works; a method can only be overridden with another
method that has the same signature.

In most current OO languages that support first-class types,such as Smalltalk or
CLOS, class meta-objects likeint or float are instances of typeClass. [11] The num-
ber3 is not a class, and thus cannot be used to replace a parameter that has been declared

73

as int . The object3 and the meta-objectint are not type-compatible. Smalltalk sup-
ports class meta-objects, but it still distinguishes between classes and instances, and
object replacement is not an appropriate operation.

Consider also the case in which a parameter from a generic class must be specialized
to a derived type, such as fromclass Animal to class Dog. If we used simple object
replacement,class Animal could be replaced with any other class, even completely
unrelated classes, because it is an instance of typeClass. Generics require a more
specific kind of parameter binding; the replacement object must be a derived class of
the original.

The Ohmu language resolves these issues by switching from a traditional class/in-
stance or type/value system to a prototype model. In the Ohmuprototype model, not
only are all types first-class objects, but all objects are first-class types. As I discussed
in section 2, a type identifies a set of objects. The typeint , for example, identifies the
set of all 32-bit integers. The number3 can also be regarded as a set. It is a set with
one element, otherwise known as a singleton set, which identifies the set of all 32-bit
integers equal to 3. By granting ordinary objects the statusof types, we can derive an
appropriate replacement rule for parameter binding:

• An object can be replaced with any other object, so long as thenew object is a
subtype of the original.

Thus, we can replace theint object with the3 object, because3 is a subset of
int . We can also replaceclass Animal with class Dog, so long asDog derives from
Animal. This new rule for parameter binding encompasses all of the traditional OO
and functional operations. It handles function calls and class instantiation by binding
types to values, it covers OO inheritance by allowing methodoverriding, and it allows
template and generic class parameters to be refined to derived classes.

3.2 Computations with Prototypes

Treating values as types has some interesting consequences. First of all, it means that
values and types must have the exact same interface. In otherwords, if it is possible to
evaluate an expression like(3 + 1), it must also be possible to evaluate the expression
(Integer + 1). If this were not true, then replacingInteger with 3 would not be a
type-safe operation.

So what does the expression(Integer + 1) mean? An abstract type such asInteger
represents a “don’t know” value. We don’t know what the result of adding1 to an arbi-
trary integer is, but we do know that the result will be an integer. SoInteger + 1 = Integer.

A side benefit of this system is that it becomes easier to writemeta-programs that
reason about types. The type of an expression can be determined merely by evaluating
an expression with abstract prototypes. Consider thePoint class from before:

Poin t : Struct {
x , y : F l o a t ;
r : s q r t (x∗x + y∗y) ;
t h e t a : atan2 (y , x) ;
new : bind (x , y) ;

74

} ;

po in t11 : Po in t . new (1 , 1) ;

Po in t . r / / evaluates to s q r t (F loa t) = Complex
Poin t . t h e t a / / evaluates to F loa t
po in t11 . r ; / / evaluates to s q r t (2) = 1 . 4 1 4 . . .
po in t11 . t h e t a ; / / evaluates to p i /2 = 1 . 5 7 0 . . .

The Point prototype is a full-fledged object. It is perfectly legal to call methods such
as r andtheta on it; the compiler will return a prototype that represents as much as it
is able to determine about the result. Oncex andy have been bound to more specific
values,r andtheta will compute a more specific result.

Programming with prototypes has a somewhat different feel than programming with
types and values. The word “prototype” is appropriate. On the one hand, prototypes
represent abstract concepts. On the other hand, prototypesare real, working objects, and
they can be used in real computations. Unlike traditional types and classes, prototypes
are not meta-level constructs.

Traditional OO classes are descriptions of instances, and type-checking or other
program verification is done by analyzing the class description, without running any
user-level code. An Ohmu program is constructed differently. An Ohmu prototype de-
fines a new concept not by describing it, but by building a working version of it. That
working version can then bespecializedby replacing abstract parameters with more
specific subtypes.

Although I have thus far used the term “binding” to describe this process, “spe-
cialization” is actually a better word. Ohmu prototype specialization bears more re-
semblance to object-oriented inheritance than it does to traditional argument binding
in functions. In particular, specialization can be incremental; it is possible to create a
series of derived prototypes, each of which is more specific than its parent.

The simplest example of incremental specialization happens when some parameters
are bound to concrete values, while the rest remain abstract:

XPoint : Po in t . new (Float , 0) ; / / a p o i n t on the x−ax is
YPoint : Po in t . new(0 , F l o a t) ; / / a p o i n t on the y−ax is

o r i g i n : XPoint . new(0 , 0) ; / / binds both x and y

In XPoint above,y is bound to0, while x remains an abstract prototype.XPoint thus
represents an abstract type — the set of all points on the x-axis.

(In theory, a clever compiler might be able to determine at this point thatsqrt(x 2) =
|x |, and thatatan2(0, x) = {0, pi}, and updater andtheta appropriately. In reality, the
current implementation has no symbolic math processing capability to speak of. Due
to compiler limitations, the result of evaluating an expression with abstract prototypes
may not be the most mathematically specific type possible. Instead, it represents what
the compiler can guess about that expression. This is arguably a more useful result,
since the capabilities of the compiler place a fundamental limitation on the rest of the

75

code. The worst case scenario is that the compiler simply returnsObject — the most
generic type possible.)

Incremental specialization also occurs when parameters are bound and re-bound to
a succession of abstract subtypes. A parameter declared as an Object, for example,
could be bound toNumber and then re-bound toInteger before finally being fully
specialized down to0:

L i s t : Struct {
head : Object ;
t a i l : L i s t ;
new : bind (head , t a i l) ;

} ;

/ / an abs t rac t type −− a l i s t o f in tege rs
I n t e g e r L i s t : L i s t . new (In teger , I n t e g e r L i s t) ;

/ / an i n f i n i t e l i s t o f zeros
Z e r o L i s t : I n t e g e r L i s t . new (0 , Z e r o L i s t) ;

/ / a ” normal ” l i s t −− (0 ,1 ,2)
f i n i t e L i s t : L i s t . new (0 , L i s t . new (1 , L i s t . new(2 , n i l))) ;

In this example,List defines an abstract data type: a list of objects.IntegerList spe-
cializeshead to create a new derived type: a list of integers.IntegerList is a subtype
of List , just as it should be.ZeroList, in turn, is a subtype ofIntegerList . It represents
a type too: an infinite list of zeros.

Ohmu does not require any run-time storage to handle such an infinite list of zeros;
the definition ofZeroList is encoded directly into the type system at compile-time.
ZeroList is an example of alazy data structure, a construct found in several functional
languages, including Haskell. Such structures are often useful for representing abstract
concepts in a convenient way. Here’s a more complex example –the list of all natural
numbers:

N a t u r a l L i s t : {
head : I n t e g e r ;
t a i l : new (head + 1) ; / / lazy parameter
new : bind (head) ;

} ;

NaturalNumbers : N a t u r a l L i s t . new (0) ;

By encapsulating the set of natural numbers as a list, list processing algorithms can
traverse it using the same interface as that for “normal” lists.

3.3 Inheritance

Points and lists are simple classes with only a few data members, so thebind syntax that
I have used up until this point is reasonably convenient. With large classes, however, it

76

is not so convenient, for one simple reason. Thebind command emulates a functional
syntax — it accepts an ordered list of arguments, and maps each position in the list to a
name in the structure. The expressionbind (x,y,z), for instance, binds the first argument
to x, the second toy, and so on.

A functional syntax is appropriate when the number of parameters is small, because
it is simpler to list things in order than it is to specify themby name. When the number of
parameters grows large, however, passing around long listsof arguments is both difficult
and error-prone. The extreme example would be method overriding during inheritance;
trying to create a derived class by passing it an ordered listof all methods would be an
interface disaster.

Moreover, creating a derived class usually involves overriding only some of the
definitions in the class, while leaving the others unchanged. For this reason, Ohmu
supports an alternate inheritance-like syntax in which parameters can be specialized by
name:

XPoint : transform Poin t { y : 0 ; } ;

This is an alternative way to declare theXPoint prototype that I described earlier. Onlyy
needs to be specialized;x remains unchanged. The semantics oftransform is identical
to bind ; it differs only in syntax.

3.4 Function Currying

This form of binding resembles another feature commonly found in functional lan-
guages:function currying. Function currying is a technique wherein a function with
multiple arguments can be logically represented as a higher-order function with only
a single argument. Ordinarily, a function withn arguments binds all of its arguments
at once, and then returns a result. A curried function binds its first argument, and then
returns another function ofn − 1 arguments. It does not compute its “real” result until
all arguments have been bound.

Ohmu structure transformations operate in a similar manner. Binding one parameter
to a more specialized definition simply returns another structure. There are two main
differences between function currying and structure transformations. The first is that
transforming a structure withn parameters will return another structure withn para-
meters, notn − 1 parameters. This difference is due to the fact that the parameters
in an Ohmu structure can be re-bound multiple times, so thereis not necessarily any
well-defined point in the life of a structure when all parameters can be said to be “fully
bound”.

The second difference is that structure transformations can bind parameters out of
order and by name, whereas a curried function can only bind arguments in the order in
which they are declared.

3.5 More Inheritance

Even this modified definition of function currying is not a complete description of OO
inheritance. I have spent a great deal of time up until this point discussingbinding,
because that is the area where the various OO and functional constructs differ the most.

77

Nevertheless, OO inheritance involves more than just method overriding; it also allows
new methods to be added to a structure. Inheritance is a combination of two operations
– aggregation and specialization. Thebind andtransform keywords only implement
specialization. They can be used to modify existing parameters, but they cannot be used
to add new ones, and they are thus insufficient to fully implement inheritance.

The Ohmu language, however, already supports aggregation.The very act of declar-
ing a new structure groups a set of simpler objects into a compound aggregate. Object
oriented inheritance can thus be emulated by combining the two operations. A true de-
rived class is created by first transforming the base class, and then embedding it within
a new structure. Theextends keyword, which is syntactically the same astransform ,
will set up an appropriate embedding:

Poin t : Struct {
x , y : Number ;

} ;

P i x e l : Struct { / / c rea te new s t r u c t u r e
extends Poin t { / / t rans form base c lass

x , y : I n t e g e r ; / / s p e c i a l i z e x and y
}
c o l o r : I n t e g e r ; / / add a c o l o r parameter

} ;

Theextends keyword will also do something thattransform does not do — it deals
with multiple inheritance in an appropriate manner. Like CLOS, Ohmu supports multi-
ple inheritance bylinearizingthe inheritance tree. Linearization solves the dreaded “di-
amond” problem of multiple inheritance by transforming a multiple inheritance graph
into a single inheritance tree.

Linearization is a good way to implement so-calledmixin classes. [2] Mixins are a
group of derived classes that all inherit from a common base class. Each mixin trans-
forms the base class in a certain way in order to add a particular feature. These features
can then be composed together by using multiple inheritance. [6] The linearization al-
gorithm will order a set of mixin classes into a stack of software layers, where each
layer modifies the layers beneath it. [16] The same “diamond pattern” that is regarded
as a flaw in inheritance by Java and C++ then becomes a powerfultool for feature
composition. [1]

The Ohmu implementation of linearization differs from CLOSonly in that it can be
used with more than just methods. Any parameter can be specialized during an Ohmu
structure transformation, and linearization will re-order all such transformations.

3.6 Generic Classes and Virtual Types

Prototype specialization is general enough that it can do more than simply emulate
standard OO inheritance; it can also emulate virtual types and generic classes. [17] The
List class in section 3.2 is one example of a generic class. It differs from generic classes
in other languages because there is no explicit type parameter (e.g.List<T>) as would

78

be required in C++ or Java. Instead, thehead parameter is specialized directly to a
subtype.

Explicit type parameters are still useful, however, when there are several parameters
of a structure which must have matching types. In a complex number class, for example,
the real and imaginary parts should have the same type:

Complex : Struct { / / a ” gener ic c lass ”
NumType: Number ; / / type parameter
rea l , imag : NumType;
o f : bind (NumType) ;
new : bind (rea l , imag) ;

} ;

/ / t h i s rede f ines r e a l and imag
ComplexFloat : Complex . o f (F l o a t) ;
C0 : ComplexFloat . new (0 , 0) ;

TheComplex class defined here is a more traditional generic class, whichusesNumType
as a type parameter. Thereal and imag members are both declared to be of type
NumType, so they are guaranteed to be type-compatible.

The main difference between this class and its C++ or Java equivalent is thatNumType,
real, and imag are all declared in the same way. There is nothing in this declaration
(such as atemplate or typedef) to indicate thatNumType is a type parameter, while
real andimag are data members. The difference between the three lies in the way they
are used, not the way they are declared.

This declaration does establish an internal dependency betweenNumType real/imag.
WhenNumType is specialized fromNumber to Float, the types ofreal and imag
must be updated accordingly. Such updates of internal dependencies are a necessary
consequence of usingvirtual types. [17] [9]

Virtual types are declared just like virtual methods, but their implementation is
more difficult. Virtual methods use late binding, which means that the choice of which
method to call is deferred until run-time. This is generallyaccomplished by storing
methods in a virtual method table, and doing pointer lookupsat run-time to select the
correct one. In C++, the act of declaring a new class will create a new virtual method
table.

Virtual types, on the other hand, have compile-time dependencies associated with
them that cannot be deferred. When a virtual type is overridden, all variable and method
signatures that rely upon that type will change. Like C++ template instantiations, bind-
ing a virtual type to a new definition will thus force a re-compilation of any affected
code. The only alternative to recompilation is to abandon static type safety and have the
compiler insert run-time type checks.

The Ohmu language actually uses both mechanisms. When a generic class is spe-
cialized at compile type, likeComplexFloat above, the compiler will recompile and
statically type-check the new version. If the specialization is done at run-time, such
“type binding” will be deferred by inserting run-time type checks. Since most new
classes are declared at compile-time, run-time checks are seldom required.

79

4 Partial Evaluation

The issue of virtual types highlights another facet of usingprototypes, and that is that
there is no clear difference in Ohmu between run-time and compile-time code. In a tra-
ditional language, function calls and class instantiationare run-time operations, whereas
inheritance and template instantiation are compile-time operations. Since Ohmu uses a
single operation, binding time is undefined.

In an interpreted language this is not an issue, because everything happens at run-
time. In order to compile code, however, certain computations must be shifted to compile-
time. The Ohmu language uses apartial evaluationengine to accomplish this task. [10]

Partial evaluation is the cousin oflazy evaluation, which is implemented in many
functional languages. One major advantage of the functional programming style is that
because there is no run-time state, the time when computations happen is irrelevant.
During lazy evaluation, computation is deferred until a later time. There are many cases,
such as the infinite lists described earlier, where this can be quite useful; computation-
ally expensive (or even infinite) calculations are only performed “as needed”, and may
be avoided altogether.

Partial evaluation could also be called “greedy evaluation” — the opposite of lazy
evaluation. It works by locating invariant data, and performing computations with that
data immediately at compile-time. In Ohmu, both constants and abstract prototypes are
regarded as invariant. In fact, all the examples I have givenup to this point have been
compile-time operations. A declaration such as:

x : I n t e g e r ;

definesx as anabstractinteger; it does not definex as a variable. Any attempts to mod-
ify the value ofx will generate an error. The parameterx can be bound to a subtype in
derived structures, but parameter binding is not a destructive operation. The declaration

o r i g i n : Po in t . new (0 , 0) ;

creates a new objectorigin in which x andy have been redefined; it does not modify
Point .x or Point .y. Note that theorigin object declared here is a constant;origin .x
and origin .y are permanently bound to 0, and that binding is performed at compile-
time.

Run-time operations are those which involve variables. A variable in Ohmu is de-
clared with a range and an initial value. The value may changeover the course of exe-
cution, but it is constrained to be a subtype of the range:

x : I n t e g e r => 0; / / i n t e g e r v a r i a b l e
. . .
x := 1 ; / / se t x to 1

Any Ohmu expressions which involves variables will be deferred until run-time because
such expressions are time-dependent. The result computed by a variable expression
depends on exactly when it is evaluated in the course of executing the program.

Expressions which involve only constants and abstract types are known asinvariant
expressions. Since such expressions don’t read from any variables, it does not matter
when they are evaluated. The Ohmu compiler includes an full-fledged interpreter, and it

80

will pre-compute all invariant expressions by invoking theinterpreter at compile-time.
For example:

x : 0 ;
y : 1 ;
z : I n t e g e r => 2;

a : s q r t (x∗x + y∗y) ; / / (compile−t ime) = 1
b : s q r t (x∗x + z∗z) ; / / (run−t ime) = s q r t (z∗z)

myPoint : Po in t . new (x , y) ; / / compile−t ime
herPo in t : Po in t . new (x , z) ; / / run−t ime
ComplexFloat : Complex . o f (F l o a t) ; / / compile−t ime

Run-time expressions use lazy evaluation, and the result ofevaluating such an expres-
sion will always take the current values of variables into account:

do {
z := 1;
p r i n t (b) ; / / p r i n t s 1 i . e . s q r t (1)
p r i n t (herPo in t . r) ; / / p r i n t s 1
z := 2;
p r i n t (b) ; / / p r i n t s 2 i . e . s q r t (4)
p r i n t (herPo in t . r) ; / / p r i n t s 2

} ;

Run-time expressions such asb and herPoint in the example above act like simple
functions that take no arguments; they will be re-evaluatedeach time they are called.
The semantics of run-time expressions and compile-time expressions are exactly the
same; it’s just that the value of a compile-time expression will never change because its
arguments never change.

Note also that in order to set the value ofz, we must place the statementz := 1
into an imperative statement list. Since expressions can beevaluated in any order, ex-
pressions are not allowed to change the state of a program. Only statements, which are
ordered, are allowed to modify state. C-style calls such assqrt(x++) are not allowed.

4.1 Structure Transformations

Partial evaluation becomes even more powerful when it is combined with structure
transformations. Consider the following example:

foo : Struct {
x , y : s t a t i c F l o a t => 0;
r : s q r t (x∗x + y∗y) ;

} ;

bar : transform foo {
x , y : s t a t i c F l o a t => 1;

81

}

foo . r ; / / r = 0 , compile−t ime
bar . r ; / / r = 1 . 4 1 . . . compile−t ime

In this example,foo definesx andy as constants. Thestatic keyword freezes a variable
so that it can no longer vary. Ohmu provides several such keywords to allow fine-tuning
of the partial evaluation process.

The reason for using “static variables” (yes, it’s an oxymoron) is that a variable
(whetherstatic or not) can be specialized in derived classes to any other value within
the same range. Iffoo.x were declared as a simple0 it could never be changed; no
other number is a subtype of0. Static variables are thus an implementation of “virtual
constants.”

In any case,foo. r will be partially evaluated because it is an invariant expression.
Yet whenbar redefinesx andy, that will affect the value ofbar.r. Thebar structure
cannot simply inheritr as-is; the partial evaluation engine must detect the changeand
re-evaluate all relevant expressions.

This is the same problem I discussed in section 3.6 with regard to virtual types.
Internal dependencies can take many forms. In general, whenever the partial evaluation
engine reduces an expression, it creates an internal dependency, and the partial evaluator
must record such dependencies so that it can update them if the relevant parameters are
overridden in derived structures. Fortunately, this dependency tracking is only necessary
at compile-time, and it incurs no run-time overhead.

4.2 Virtual Classes

In addition to supporting virtual types, Ohmu supports virtual classes. [13] A virtual
class is simply a class definition that is nested inside another class:

L i s t : Struct {
DataType : Object ; / / type parameter
of : bind (DataType) ;

Node : Struct {
i tem : DataType ;
next : Node ;

} ;

begin : Node ;
} ;

This is an alternate definition of a linked list class which behaves like a container instead
of a stream. It encapsulates the list behavior by declaring an internalNode class. Since
Node is a virtual class, it can be overridden just like any other parameter:

DoubleL is t : Struct {
extends L i s t {

Node : Struct { / / s p e c i a l i z e Node

82

extends parent . Node ; / / parent r e f e r s to L i s t
prev : Node ; / / add another parameter

} ;
} ;

end : Node ;
} ;

This definition of a doubly linked list simply inherits from the singly-linked version.
It adds aprev parameter toNode, and anend parameter to the container. Note the
use of theparent keyword, which refers the the original definition ofNode. It is a
bad idea to refer to a base class by name, because doing so hard-codes the structure of
the inheritance hierarchy and thus prevents the use of mixins. [6] Usingparent .Node
instead ofList .Node also resolves some subtle errors related to lexical scope that can
crop up when specializing a virtual class.

Other than that, there is nothing special about this definition of a doubly linked
list; it is simple and easy to understand. It is also impossible to write in a traditional
OO language like Java or C++. There are two internal dependencies here:Node.prev
and List .begin, which are both declared as typeNode. Since C++ does not support
virtual types, it cannot update type dependencies. If this code were written in C++,
DoubleList would inherit the original type declarations forNode.next andbegin. In
other words, althoughNode.prev andDoubleList.end would refer to doubly-linked
nodes,Node.next andDoubleList.begin would still refer to singly-linked nodes, and
it would necessary to constantly downcast fromList .Node to DoubleList.Node in
order to traverse the list.

Despite the fact that lists are among the most basic of all data structures, stan-
dard OO inheritance cannot cope with a simple inheritance relationship between singly-
linked lists and doubly-linked lists. This sort of headachepoints to a fundamental flaw
in current OO languages – the fact that inheritance can only deal with virtual methods,
not virtual types. By unifying functions and classes, this problem can be resolved.

5 Conclusion

The Ohmu language is interesting from a theoretical standpoint because it unifies the
functional and object-oriented paradigms. Instead of tacking classes and inheritance
onto a functional language as separate constructs, it extends the traditional typed lambda
calculus so that OO concepts can be represented in natural way. A class is a second-
order function. An instance is the activation record of a function. OO inheritance can
be modeled, in part, as a variation of function currying.

It should be noted that the use of a partial evaluation enginealso provides a natural
division between the imperative and functional programingparadigms. Code that is
partially evaluated at compile-time must use a pure functional style, because there is
not yet any run-time state to modify. Run-time code is free touse imperative concepts.

Unifying functional and OO paradigms also has practical application, because it
simplifies several design patterns. [7] For example, the Abstract Factory and Factory
Method design patterns are necessary only because traditional OO classes cannot be

83

virtual. In Java and C++, all classes must be specified at compile-time. The factory
design patterns are forced to hide class instantiation behind virtual methods so that the
choice of which class to instantiate can be deferred until run-time. The Ohmu language
supports virtual classes and class parameters natively, sothis extra level of indirection is
unnecessary. The Prototype design pattern has likewise been incorporated directly into
the type system.

In a more general sense, unifying methods and classes makes the Ohmu language
scale-independent. In a traditional OO language, methods are combined into classes,
classes are combined into frameworks, frameworks are combined into libraries, etc. At
each level of the hierarchy, the programming constructs andoperations change, and this
makes it difficult to create complex, large-scale programs.

This is a general problem with mainstream OO languages. Object-oriented inheri-
tance is a powerful tool for manipulating individual classes, but most solutions, includ-
ing almost all design patterns, require a framework of interacting classes. Mainstream
OO languages do not provide any real mechanism for manipulating such frameworks.
[15] As a result, a whole slew of new programming paradigms, such as aspect-oriented
programming, [12] component-based programming, [1] feature-based programming,
etc. have been proposed to provide operations on class frameworks.

If classes can be treated as functions, however, then a set ofinteracting classes is no
different from a set of interacting methods. A set of interacting methods, in turn, is just
a class — the precise construct that standard object-oriented programming is designed
to handle. Unifying functions and classes thus resolves a major outstanding problem
that has crippled the OO programming paradigm.

84

Bibliography

[1] Don Batory and Sean O’Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Transactions on Software
Engineering and Methodology, 1(4):355-398, October 1992.

[2] G. Bracha and W. Cook. Mixin-Based Inheritance. Joint ACM Conference on
OOPSLA and ECOOP, 1990.

[3] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the
Future Safe for the Past, Adding Genericity to the Java Programming Language.
Proceedings of OOPSLA ’98.

[4] Guiseppe Castagna. Covariance and Contravariance: Conflict Without a Cause.
ACM Transactions on Programming Languages and Systems, 1995.

[5] Czarnecki and U. Eisenecker. Generative Programming: Methods, Techniques,
and Applications. Addison-Wesley, 2000.

[6] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. ACM Sympo-
sium on Principles of Programming Languages, pages 171-183, 1998.

[7] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Grady Booch. De-
sign Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley,
Mass. 1995.

[8] Paul Hudak, John Peterson, Joseph H. Fasel. A Gentle Introduction to Haskell,
available at http://www.haskell.org/tutorial

[9] Atsushi Igarashi and Benjamin Pierce. Foundations for virtual types. Technical
report, University of Pennsylvania, 1998.

[10] Neil Jones, Carsten Gomard, and Peter Sestoft. PartialEvaluation and Automatic
Program Generation. Prentice Hall, 1993.

[11] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art ofthe Metaobject Proto-
col. The MIT Press, Cambridge, MA, 1991.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopez, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. Proceedings of ECOOP ’97.

[13] O.L. Madsen and B. Møller-Pedersen. Virtual classes: Apowerful mechanism in
object-oriented programming. Proceedings of OOPSLA ’89.

[14] Ole Lehrmann Madsen, Birger Møller-Pedersen, KristenNygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley
and ACM Press, 1993 ISBN 0-201-62430-3

[15] Gail Murphy and David Notkin. The Interaction Between Static Typing and
Frameworks. Technical Report TR-93-09-02, University of Washington, 1993.
See also: The Use of Static Typing to Support Operations on Frameworks. Object-
Oriented Systems 3, 1996, pp. 197-213.

[16] Yannis Smaragdakis and Don Batory. Implementing Layered Designs with Mixin
Layers. Proceedings of ECOOP, 1998.

[17] K. K. Thorup and M. Torgersen. Unifying Genericity — Combining the Benefits
of Virtual Types and Parameterized Classes. Proceedings ofECOOP, 1999.

85

86

An Analysis of Constrained Polymorphism for
Generic Programming

Jaakko Järvi, Andrew Lumsdaine, Jeremy Siek, and JeremiahWillcock

Open Systems Lab
Indiana University

Bloomington, IN USA
{jajarvi,lums,jsiek,jewillco }@osl.iu.edu

Abstract. Support for object-oriented programming has become an integral part
of mainstream languages, and more recently generic programming has gained
widespread acceptance. A natural question is how these two paradigms, and their
underlying language mechanisms, should interact. One particular design option,
that of using subtyping to constrain the type parameters of generic functions, has
been chosen for the generics extensions to Java and C#. The leading alternative
to subtype-based constraints is to use type classes, as theyare called in Haskell,
or concepts, as they are called in the C++ generic programming community. In
this paper we argue that while object-oriented interfaces and concepts are similar
in many ways, they also have subtle but important differences that make concepts
more suitable for constraining polymorphism in generic programming.

1 Introduction

Generic programming is an emerging programming paradigm for writing highly re-
usable libraries of algorithms. The generic programming approach has been used ex-
tensively within the C++ community, in libraries such as the Standard Template Li-
brary [31, 30], Boost Graph Library [28] and Matrix TemplateLibrary [29]. Generic
algorithms are parameterized with respect to the types of their arguments so that a sin-
gle implementation may work on a broad class of different argument types.

For modularity, it is important for generic functions to be type checked separately
from their call sites. The body of a generic function should be type checked with respect
to its interface, and a call to that function should be type checked with respect to the
same interface. Separate type checking helps the author of the generic function to catch
errors in its interface and implementation, and more importantly, provides better error
messages for incorrect uses of generic functions.

To provide separate type checking, a programming language must have a mech-
anism for constraining polymorphism. Several mainstream object-oriented languages
with support, or proposed support, for generics, such as Java, C#, and Eiffel, implement
variations ofF-bounded polymorphism[6]. Haskell, a modern functional language, uses
type classes[34] as the constraint mechanism for polymorphic functions. ML has pa-
rameterized modules, called functors, whose parameters are constrained bysignatures.
Other approaches includewhere clausesin CLU [23]. C++ is an example of a language

87

without built-in support for constraints, and which has no direct support for separate
type checking: the body of a generic function is type checkedat each call site.

In our recent study [14], we evaluated six mainstream programming languages
with respect to their support for generic programming. Mainstream object-oriented lan-
guages did not rank highly in this evaluation; practical problems encountered include
verbose code, redundant code, and difficulties in composingseparately defined generic
components. These problems relate to the constraint mechanisms used in the various
languages. Consequently, this paper focuses on the suitability of different constraint
mechanisms for use in generic programming. We analyze current manifestations of
subtype-bounded polymorphism in mainstream object-oriented languages, as well as
other constraint mechanisms proposed in the literature, and identify the causes of the
above problems. We argue that the current implementations of subtype-based constraint
mechanisms in mainstream object-oriented languages are a major hindrance to effective
generic programming; it proves difficult to organize constraints into well-encapsulated
abstractions. We describe how object-oriented languages could be adapted to avoid the
problems mentioned above. The inspiration for the proposedchanges comes from con-
straint mechanisms such as those in Haskell and ML, which arenot affected by these
problems.

2 Background

We start with a short description of generic programming, and then describe two fam-
ilies of type systems/language mechanisms for supporting generic programming. The
first family is based on just parametric polymorphism whereas the second family is
based on subtype-bounded parametric polymorphism.

2.1 Generic programming

Generic programming is a systematic approach to software reuse. In particular, it fo-
cuses on finding the most general (or abstract) formulationsof algorithms and then
efficiently implementing them. These two aspects, generality and efficiency, are oppos-
ing forces, which is perhaps the most challenging aspect of this practice. The goal is for
a single algorithm implementation to be usable in as many situations as reasonably pos-
sible without sacrificing performance. To cover all situations with the best performance,
it is often necessary to provide a small family of generic algorithms with automatic dis-
patching to the appropriate implementation based on the properties of the input types.

There are several ways in which an algorithm can be made more general. The sim-
plest and most common method is to parameterize the types of the elements the algo-
rithm operates on. For example, instead of writing a matrix multiply function that works
only for matrices ofdouble, one can parameterize the function for matrices of any nu-
meric type. Another way in which algorithms can be parameterized is on the represen-
tations of the data structures they manipulate. For example, a linear search function can
be generalized to work on linked lists, arrays, or indeed anysequential data structure
provided the appropriate common interface can be formulated. Yet another approach to
generalization is to parameterize certain actions taken bythe algorithm. For example,

88

in the context of graph algorithms, a breadth-first search (BFS) algorithm can invoke a
user-defined callback function when tree edges are discovered. A client could use this to
record the parent of each node in a BFS tree for the graph. The end result of this abstrac-
tion process should be an algorithm that places the minimum number of requirements
on its input while still performing the task efficiently.

Terminology Fundamental to realizing generic algorithms is the notion of abstraction:
generic algorithms are specified in terms of abstract properties of types, not in terms of
particular types. In the terminology of generic programming, aconceptis the formal-
ization of an abstraction as a set of requirements on a type (or on several types) [18, 1].
These requirements may be semantic as well as syntactic. A concept may incorporate
the requirements of another concept, in which case the first concept is said torefinethe
second. Types that meet the requirements of a concept are said to modelthe concept.
Note that it is not necessarily the case that the requirements of a concept involve just
one type; sometimes a concept involves multiple types and specifies their relationships.

A concept consists of four different types of requirements:associated types, func-
tion signatures, semantic constraints, and complexity guarantees. Theassociated types
of a concept specify mappings from the modeling type to othercollaborating types (such
as the mapping from a container to the type of its elements). The function signatures
specify the operations that must be implemented for the modeling type. Asyntactic con-
ceptconsists of just associated types and function signatures,whereas asemantic con-
ceptalso includes semantic constraints and complexity guarantees [18]. At this point
in the state of the art, type systems typically do not includesemantic constraints and
complexity guarantees. For this paper we are only concernedwith syntactic concepts,
so “concept” will mean “syntactic concept.”

Generic programming requires some kind of polymorphism in the implementation
language to allow a single algorithm to operate on many types. The remainder of this
section reviews different language mechanisms and type systems that support polymor-
phism.

2.2 Parametric polymorphism

Generic programming has its roots in the higher-order programming style commonly
used in functional languages [19]. The followingfind function is a simple example of
this style: functions are made more general by adding function parameters and type
parameters. In this example we parameterize on theT andIter types and pass in func-
tions for comparing elements (eq) and for manipulating the iterator (next, at end, and
current). This style obtains genericity using only unconstrained parametric polymor-
phism. For purposes of discussion we take the liberty of extending C# with polymorphic
functions, function types, and type aliases as class members.

Iter find<Iter>(Iter iter, Iter.value type x, ((Iter.valuetype, Iter.valuetype)→ bool) eq,
Iter find<Iter>((Iter → Iter) next, (Iter → bool) at end, (Iter→ Iter.value type) current)
{

for (; !at end(iter); iter = next(iter)){
Iter.value type y = current(iter);

89

if (eq(x, y))
break;

}
return iter;

}

bool int eq(int a, int b){ return a == b; }

class ArrayIterator<T> {
typedef T valuetype; ...

}

ArrayIterator<T> array iter next<T>(ArrayIterator<T> iter) { ... }

bool array iter at end<T>(ArrayIterator<T> iter) { ... }

T array iter current<T>(ArrayIterator<T> iter) { ... }

void main(){
int[] array = new int[]{1, 2, 3, 5};
ArrayIterator<int> i(array);
i = find(i, 2, int eq, array iter next, array iter at end, array iter current);

}

This example demonstrates one obvious disadvantage of the higher-order style: the
large number of parameters forfind makes it unwieldy to use. One solution to this prob-
lem is to introduce where clauses (various forms of which canbe found in CLU [23],
Theta [11], and Ada [33]). A where clause is a list of functionsignatures in the dec-
laration of a generic function which are automatically looked up at each call site and
implicitly passed into the function. This makes calling generic functions less verbose.

Iter find<Iter, T>(Iter iter, T x)
where bool eq(T, T), Iter next(Iter), bool atend(Iter), T current(Iter)

{ ...}

bool eq(int a, int b){ return a == b; }

class ArrayIterator<T> { ... }

ArrayIterator<T> next<T>(ArrayIterator<T> iter) { ... }

bool at end<T>(ArrayIterator<T> iter) { ...}

T current<T>(ArrayIterator<T> iter) { ...}

void main(){
int[] array = new int[]{1, 2, 3, 5};
ArrayIterator<int> i(array);
i = find(i, 2);

}

The addition of where clauses is not a fundamental change to the type system of the
language; it is syntactic sugar for explicitly passing the function arguments.

2.3 Concepts

Similar sets of requirements often appear in many generic functions, so grouping related
requirements together has software engineering benefits. For example, in a generic li-

90

brary such as the C++ Standard Library, all functions on sequences include requirements
on their iterator parameters. Where clauses do not provide away to group and reuse
requirements. This is the role played by concepts. In the following example we create
two concepts: one for expressing the comparison requirement, and one for grouping
together the iterator operations. We are again using the base syntax of C#, but this time
extended with concepts (we define the semantics of concepts later in this section).

concept Comparable<T> {
bool eq(T, T);

}

concept Iterator<Iter> {
type Iter.valuetype; // Require an associated type

Iter next(Iter);
bool at end(Iter);
value type current(Iter);

}

Iter find<Iter, T>(Iter iter, T x)
where T models Comparable,
whereIter models Iterator,
whereIterator(Iter).value type == T

{ ...}

A model of a concept is a set of types and a set of functions thatmeet the require-
ments of the concept. Some languages link implementations to concepts through an
explicit models declaration(cf. Haskell instance declarations). At the call site forfind,
for each concept requirement, a corresponding models declaration must be found.

int models Comparable{
bool eq(int a, int b){ return a == b; }

}

class ArrayIterator<T> { ... }

forall<T> ArrayIterator<T> models Iterator{
type valuetype = T;
ArrayIterator<T> next(ArrayIterator<T> iter) { ... }
bool at end(ArrayIterator<T> iter) { ... }
value type current(ArrayIterator<T> iter) { ...}

}

void main(){
int[] array = new int[]{1, 2, 3, 5};
ArrayIterator<int> i(array);
i = find(i, 2);

}

The expressionIterator(Iter).value type in the constraints forfind accesses the
value type type definition from within the models declaration forIter. This mecha-
nism provides a way to map from the primary types of the concept to the associated
types.

91

Analogously to inheritance, concepts can be built from other concepts using refine-
ment. A simple example of this is the followingBidirectionalIterator concept.

concept BidirectionalIterator<Iter> : Iterator<Iter> {
Iter prev(Iter);

}

One important observation about concepts is that they are not types. They can not
be used as the type of a parameter, or to declare a variable. For the mathematically
oriented, a concept is a set of multi-sorted algebras [18]. Roughly speaking, a multi-
sorted algebra corresponds to a module: it is a collection ofdata types (the sorts) and
functions (the operations of the algebra). Earlier we defined a concept as requirements
on one or more types. The correspondence between these two definitions is the classic
identification of a set with the predicate that specifies which elements are in the set (the
elements in this case are modules).

In practice it is convenient to separate the data types of a module into two groups:
the main types and the associated types. An example of this isan iterator (the main
type) and its element type (an associated type). In a genericalgorithm such asfind, a
common need is the ability to obtain an associated type giventhe main type. A module
then consists of a partial map from identifiers (names for associated types) to types
asc(M) : Id ⇀ Type, and a partial map from function signatures (the name, parameter
types, and result type) to function implementationsΣ(M) : S ⇀ F .

We formally define a conceptC as a predicate on somemain types~t and a module
M : C (~t ,M) = A ∧ F ∧ ST whereA is of the form~x ⊆ dom(asc(M)) (where~x are
the associated types required byC), F is of the form~s ⊆ dom(Σ(M)) (where~s are
the function signatures required byC), andST is of the formτ1 = τ ′

1 ∧ · · · ∧ τn = τ ′
n

(where theτi andτ ′
i for i = 1 . . .n are pairs of type expressions which are required to

be equal). The following is theIterator concept expressed using this notation:

Iterator(Iter,M) ≡
{value type} ∈ dom(asc(M))∧
{ next : Iter → Iter, at end : Iter → bool, current : Iter→

asc(M)(valuetype)} ⊆ Σ(M)

In the previous example, the body of the models declaration

forall<T> ArrayIterator<T> models Iterator{
type valuetype = T;
ArrayIterator<T> next(ArrayIterator<T> iter) { ... }
bool at end(ArrayIterator<T> iter) { ... }
value type current(ArrayIterator<T> iter) { ...}

}

can be viewed as a parameterized module with the following set of function signatures:

ArrayIterModule ≡ Λ T.
({(value type, T)},
({
(next : ArrayIterator<T> → ArrayIterator<T> = ...,
(at end : ArrayIterator<T> → bool = ...,
(current : ArrayIterator<T> → value type = ...
(})

92

So for any typeT, Iterator(ArrayIterator<T>, ArrayIterModule<T>) is true. We
formally define that a sequence of types~t together with a moduleM models a concept
c whenc(~t ,M) is true. We often say that a sequence of types models a concept, leaving
out mention of the module of functions. This abbreviated form is writtenc(~t) and means
that there is a models declaration in scope that associates aset of associated types and
functions with the types~t and conceptc.

A conceptc refines another conceptc′, denoted byc � c′, if ∀~t ,m. c(~t ,m) implies
c′(~t ,m).

To describe concept-bounded types (and later subtype-bounded) we use the general
setting ofqualified types[16] to allow for a more uniform presentation. A qualified type
is of the formP => τ whereP is some predicate expression andτ is a type expression.
The intuition is that ifP is satisfied thenP => τ has typeτ . A qualified polymorphic
type is then written

∀t . P => τ (1)

or with multiple type parameters

∀~t . P => τ (2)

A concept-bounded type is a qualified type where the predicates are models asser-
tions. So concept-bounded polymorphic types have the following form.

∀~t . c1(~t1) ∧ · · · ∧ cn(~tn) => τ (3)

where~ti ⊆ ~t , the ci ’s are concepts, andτ is a type expression possibly referring to
types in~t .

The above definitions describe the structural aspects of modeling and refinement.
However, languages such as Haskell and the extended C# of this paper use nominal
conformance. That is, in addition to the structural properties being satisfied, there must
also be explicit declarations in the program to establish the modeling and refinement
relations.

Related constraint mechanismsHaskell and ML provide constraint mechanisms that
share much in common with concepts. The following example, written in Haskell,
groups the constraints from the previous example into type classes namedComparable
andIterator and then uses them to constrain thefind (Haskell is a functional language,
not object-oriented, and does not have object-oriented-style classes). In the declaration
for find, theComparable T⇒ part is called the “context” and serves the same purpose
as the CLU where clause. TheInt type is made aninstanceof Comparableby pro-
viding a definition of the required operations. In generic programming terminology, we
would say thatInt models theComparableconcept. Note that Haskell supports multi-
parameter type classes, as seen in theIterator type class below. The syntaxi → t below
means that the typet is functionally dependent oni, which is how we express associated
types in Haskell.

93

class Comparable t where
eq :: t→ t → Bool

class Iterator i t| i → t where
next :: i → i
at end :: i → Bool
current :: i → t

find :: (Comparable t, Iterator i t)⇒ i → t → i
find iter x =

if (at end iter)|| eq x (current iter) then
iter

else
find (next iter) x

instance Comparable Int where
eq i j = (i == j)

Theinstancedeclarations can be more complex. For example, the followingconditional
instance declaration makes all listsComparable, as long as their element types are
Comparable:

instance Comparable t⇒ Comparable [t] where
...

ML signaturesare a structural constraint mechanism. A signature describes the pub-
lic interface of a module, orstructureas it is called in ML. A signature declares which
type names, values (functions), and nested structures mustappear in a structure. A sig-
nature also defines a type for each value, and a signature for each nested structure. For
example, the following signature describes the requirements ofComparable:

signature Comparable =
sig

type ElementT
val eq : ElementT→ElementT→bool

end

Any structure that provides the typeElementTand aneq function with the appropriate
types conforms to this signature without any explicit instance declarations. For exam-
ple:

structure IntCompare =
struct

type ElementT = int
fun eq i1 i2 = ...

end

2.4 Subtype-bounded polymorphism

For object-oriented languages, the subtype relation is a natural choice for constraining
generic functions. This section describes the various forms of subtype-bounded poly-
morphism that appear in mainstream languages and in the literature.

94

Bounded quantification Cardelli and Wegner [7] were the first to suggest using sub-
typing to express constraints, and incorporatedbounded quantificationinto their lan-
guage named Fun. The basic idea is to use subtyping assertions in the predicate of
a qualified type. For bounded quantification the predicates are restricted to the form
t ≤ σ wheret is a type variable andσ does not refer tot . So we have polymorphic
types of the form

∀t . t ≤ σ => τ [t] (4)

wheret is a type variable,σ is a type expression that does not refer tot , andτ [t] is a
type expressionτ that may refer tot .

Fun is an unusual object-oriented language in that subtyping is structural, and there
are no classes or objects; it has records, variants, and recursive types. The idea of
bounded quantification carries over to mainstream object-oriented languages, the main
change being the kinds of types and subtyping relations in the language. Subtyping in
languages such as C++, Java, and C# is between classes (or between classes and inter-
faces). The following is an attempt to write thefind example using bounded quantifi-
cation. There are two options for how to write theeq method in theInt class below.
The first option results in a type error because method parameters may not be covariant
(Eiffel supports covariance, but its type system is unsound[9, 4]). The second option re-
quires a downcast, opening the possibility for a run-time exception. This is an instance
of the classic binary method problem [5].

interface Comparable{
bool eq(Comparable);

}

Iterator find<T : Comparable>(Iterator iter, T x) { ... }

class Int : Comparable{
bool eq(Int i){ ... } // Not a valid override
bool eq(Comparable c){ ... } // Requires a downcast

}

F-bounded polymorphism Bounded quantification was generalized toF-bounded
polymorphismby Canning et al. [6], which allows the left-hand side of a subtyping
constraint to also appear in the right-hand side, thus enabling recursive constraints.

∀t . t ≤ σ[t] => τ [t] (5)

Types that are polymorphic in more than one type can be expressed by nesting.

(∀t1. t1 ≤ σ[t1] => (∀t2. t2 ≤ σ[t1, t2] => (∀t3. t3 ≤ σ[t1, t2, t3] => τ [t1, t2, t3])))

However, a constraint on typeti may only refer toti and earlier type parameters.
The following example shows thefind example, this time written using F-bounded

polymorphism. We can now express the program without downcasts.

interface Comparable<T> {
bool eq(T);

}

95

interface Iterator<Iter,T> {
Iter next();
bool at end();
T current();

}

Iter find<T, Iter>(Iter iter, T x)
where T : Comparable<T>,
whereIter : Iterator<Iter,T>

{ ...}

class Int : Comparable<Int> {
bool eq(Int i){ ... }

}

F-bounded polymorphism in turn was generalized to systems of mutually recursive
subtyping constraints by Curtis [10, 12]. Arecursively subtype-constrained typeis of
the formP => τ whereP is a predicate of the formτ1 ≤ τ ′

1 ∧ · · · ∧ τn ≤ τ ′
n . Then a

recursively constrained polymorphic type is of the form

∀~t . τ1 ≤ τ ′
1 ∧ · · · ∧ τn ≤ τ ′

n => τ (6)

where the type variables in~t can appear anywhere in the type expressionsτi , τ ′
i , andτ .

Recursively constrained polymorphic types, with some minor restrictions, are used in
the generics extensions for Java and C#.

The following is an example of mutually recursive subtype constraints. The inter-
face describing a graph node is parameterized on the edge type, and vice versa, and the
breadthfirst searchfunction uses the two interfaces in a mutually recursive fashion.

interface Node<E> {
public List<E> out edges();

}

interface Edge<N> {
public N source();
public N target();

}

public void breadthfirst search<N, E>(N n)
where N: Node<E>,
whereE: Edge<N> { ... }

2.5 Definitions of the subtype relation

Subtype-bounded polymorphism expresses constraints based on the subtyping relation,
so the expressiveness of the constraints is very much dependent on what types and sub-
type relations can be defined in the language. As mentioned inSection 2.4, much of the
literature on bounded and F-bounded polymorphism [7, 6] used languages with records,
variants, and recursive types and used a structural subtyping relation. Mainstream lan-
guages like C++, Java, and C# define subtyping as subclassing, a named subtyping rela-
tion between object types.

96

For a typeB to be a subtype of some typeA in a subtype relation that is based on
structural conformance,B must have at least the same capabilities asA. For example, if
A is a record type, thenB must have all the fields ofA and the types of those fields must
be subtypes of the corresponding fields inA. A subtype relation based on named con-
formance, on the other hand, requires an explicit declaration in addition to the structural
conformance requirement.

Mainstream object-oriented languages, such as C++, Java, C#, and Eiffel, unify sub-
typing with subclassing. The subtype relation is established at the point of definition
of each class by declaring its superclasses. In particular,it is not possible to add a new
supertype to an existing class without modifying the definition of the class. Mecha-
nisms permitting suchretroactive subtyping(or retroactive abstraction) declarations
have been proposed and can be found in several programming languages, such as
Sather [26, 27] and Cecil [8].

3 Discussion

This section discusses problems arising in object-oriented languages when attempting
to follow the generic programming paradigm. Our earlier study in [14] showed that
generic programming suffers from a set of distinct problems, whose cumulative effect
is even more significant. As some of the symptoms, we observedverbose code in the
form of excessive numbers of type parameters and constraints, awkward constructions
to work around language limitations, difficulties in library maintenance, and the forced
exposure of certain implementation details; the examples in [14] clearly demonstrate
this.

We describe several extensions to Generic C# that lead to notably improved support
for generic programming. We also describe a source-to-source translation of some of
the extended features to current Generic C#.

3.1 Accessing and constraining associated types

Associated type constraints are a mechanism to encapsulateconstraints on several func-
tionally dependent types into one entity. Section 2.3 gave an example of an iterator con-
cept and its associated typevalue type. As another example, consider the following two
concepts specifying the requirements of a graph type. TheIncidenceGraphconcept re-
quires the existence of vertex and edge associated types, and places a constraint on the
edge type:

concept GraphEdge<Edge> {
type Vertex;
Vertex source(Edge);
Vertex target(Edge);

}

concept IncidenceGraph<Graph> {
type Vertex;
type Edge models GraphEdge;
Vertex == GraphEdge<Edge>.Vertex;

97

type OutEdgeIterator models Iterator;
Iterator<OutEdgeIterator>.value type == Edge;

OutEdgeIterator outedges(Graph g, Vertex v);
int out degree(Graph g, Vertex v);

}

All but the most trivial concepts have associated type requirements, and thus a
language for generic programming must support their expression. Of mainstream lan-
guages, ML supports this via types in structures and signatures; C++ can represent as-
sociated types as member typedefs ortraits classes[25] but cannot express constraints
on them. Java and C# do not provide a way to access and place constraints on type
members of generic type parameters. However, associated types can be emulated using
other language mechanisms.

interface GraphEdge{
type Vertex;
Vertex source();
Vertex target();

}

interface IncidenceGraph{
type Vertex;
type Edge : GraphEdge;
Vertex == Edge.Vertex;

type OutEdgeIterator
: IEnumerable<Edge>;

OutEdgeIterator outedges(Vertex v);
int out degree(Vertex v);

}

interface GraphEdge<Vertex1> {
Vertex1 source();
Vertex1 target();

}

interface IncidenceGraph<
Vertex1, Edge1, OutEdgeIterator1>
where

Edge1 : GraphEdge<Vertex1>,
OutEdgeIterator1 :

IEnumerable<Edge1> {
OutEdgeIterator1 outedges(Vertex1 v);
int out degree(Vertex1 v);

}

(a) (b)

Fig. 1.Graph concepts represented as interfaces which can containassociated types (a), and their
translations to traditional interfaces (b).

A common idiom used to work around the lack of support for associated types is to
add a new type parameter for each associated type. This approach is frequently used in
practice. The C#IEnumerable<T> interface for iterating through containers serves as
an example. When a type extendsIEnumerable<T> it must bind a concrete value, the
value type of the container, to the type parameterT. The classAdjacencyList, which ex-
tends theIncidenceGraphinterface, in Figure 2(b) is an example of the same situation.
The following generic function, which hasIncidenceGraphas a constraint, includes

98

an extra type parameter for each associated type. These typeparameters are used as
arguments toIncidenceGraphin the constraint on the actual graph type parameter.

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator> {
return g.out edges(v).Current.target();

}

The main problem with this technique is that it fails to encapsulate associated types
and constraints on them into a single concept abstraction. Every reference to a concept,
whether it is being refined or used as a constraint by a genericfunction, needs to list
all of its associated types, and possibly all constraints onthose types. In a concept with
several associated types, this becomes burdensome. In the experiment described in [14],
the number of type parameters in generic algorithms was often more than doubled due
to this effect.

A direct representation for associated types could be addedto Generic C# as an
extension, providingmember typessimilar to those in C++. In this extension, interfaces
can declare members which are placeholders for types, and place subtype constraints
on these types. Classes extending these interfaces must bind concrete values to these
types. As an example, Figure 1(a) shows two concepts from thedomain of graphs. The
GraphEdgeconcept declares the member typeVertex. The IncidenceGraphconcept
has two associated types:Vertex andEdge. Note the three constraints:Edgemust be
a subtype ofGraphEdge; Vertex must be the same type as the associated type, also
namedVertex, of Edge; andOutEdgeIteratormust conform toIEnumerable<Edge>.
The last constraint uses the standardIEnumerable interface which does not use the
member type extension; the two styles can coexist.

This representation for associated types can straightforwardly be translated into the
emulation using extra type parameters which was described earlier. Figure 1(b) shows
the translated versions of the graph interfaces. In this translation, each interface con-
taining associated types has an extra parameter added for each associated type. The
subtype constraints on the associated types are converted to subtype constraints on the
corresponding type parameters. In classes inheriting fromsuch interfaces, the associ-
ated type definitions are converted to type arguments of the interfaces, as shown in
Figure 2(b). Generic functions using interfaces with associated types also have an extra
type parameter added for each associated type (Figure 3(b)). Within the body and con-
straints of a generic function, references to associated types are converted to references
to the corresponding type parameters. Equality constraints between two types are han-
dled by unifying, in the logic programming sense, the translations of the types required
to be equal. For example, the typeVertex1is used both as theVertexassociated type for
GraphEdgeand forIncidenceGraphin Figure 1(b). Figure 2 shows the code defining
two concrete classes which extend the interfaces forGraphEdgeandIncidenceGraph,
both before and after translation. We used this translationof associated types, manually,
while implementing the graph library described in [14].

The advantages of the associated type extension become evident when using inter-
faces to constrain type parameters of a generic algorithm. Consider thefirst neighbor
function in Figure 3. The function has two parameters: a graph and a vertex. Using the
extension, shown in Figure 3(a), a single type parameter candescribe the types and

99

class AdjListEdge : GraphEdge{
type Vertex = int;
...

}

class AdjacencyList : IncidenceGraph{
type Vertex = int;
type Edge = AdjListEdge;

type OutEdgeIterator =
IEnumerable<AdjListEdge>;

OutEdgeIterator outedges(Vertex v){...}

int out degree(Vertex v){...}
}

class AdjListEdge : GraphEdge<int> {
...

}

class AdjacencyList
: IncidenceGraph<int, AdjListEdge,

IEnumerable<AdjListEdge> > {

IEnumerable<AdjListEdge>
out edges(Vertex v){...}

int out degree(Vertex v){...}
}

(a) (b)

Fig. 2. A concrete graph type which models theIncidenceGraphconcept.

constraints of both of these parameters. In the translated code (Figure 3(b)), a separate
type parameter is needed for each of the three associated types of the graph type.

Note that the translated code is not valid Generic C#; we are assuming that con-
straints on type parameters are propagated automatically from the interfaces which are
used, which is not the case in the current version of Generic C#. Section 3.2 discusses
this issue in more detail.

G.Vertex firstneighbor<G>(G g, G.Vertex v) where G : IncidenceGraph{
return g.out edges(v).Current.target();

}

(a)

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator> {
return g.out edges(v).Current.target();

}

(b)

Fig. 3. A generic algorithm usingIncidenceGraphas a constraint, both with (a) and without (b)
the extension.

Note that an interface that contains associated types is nota traditional object-
oriented interface; in particular, such an interface is nota type. As the translation sug-
gests, these interfaces cannot be used without providing, either implicitly or explicitly,

100

the values of their associated types. As a consequence, interfaces with associated types
can be used as constraints on type parameters, but cannot be used as a type for vari-
ables or function parameters — uses that traditional interfaces allow. For example, the
function prototype in Figure 3(a) cannot be written as:

IncidenceGraph.Vertex firstneighbor(IncidenceGraph g, IncidenceGraph.Vertex v);

The references toIncidenceGraph.Vertexare undefined; the abstractIncidenceGraph
interface does not define a value for theVertexassociated type. This is a major differ-
ence between our translation and systems based onvirtual types[24, 32]. In our trans-
lation, all associated types are looked up statically, and so the type ofg is the interface
IncidenceGraph, not a concrete class which implementsIncidenceGraph. On the other
hand, in systems with virtual types, member types are associated with the run-time type
of a value, rather than its compile-time type; thus, the function definition above would
be allowed. The virtual type systems described in [24, 32] donot provide means to
express the constraints in the previous examples in type-safe manner. Ernst describes
family polymorphism[13], a type-safe variation of virtual types, for the programming
language BETA. This is a related mechanism to the extension proposed here for repre-
senting associated types in an object-oriented language. Whether family polymorphism
can provide full support for associated types remains to be evaluated.

For the translation described here to work, it is important to be able to infer the
values of associated types from the types bound to the main type parameters. This is
not currently supported in Generic C# or Java generics. As anexample of this, consider
the following equivalent formulation of thefirst neighbor function, which makes the
use of the associated edge type more explicit:

G.Vertex firstneighbor<G>(G g, G.Vertex v) where G : IncidenceGraph{
G.Edge firstedge = g.outedges(v).Current;
return first edge.target();

}

In a call tofirst neighbor, a concrete graph type is bound toG, and thus associated
types, such asG.Edge, can be resolved. In the translated version, however, it is less
obvious that associated types can be inferred automatically:

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator>

{
G Edge first edge = g.outedges(v).Current;
return first edge.target();

}

The two type parametersG EdgeandG OutEdgeIteratorare not the types of any of
the function arguments, and thus are not directly deducible. To infer their types, the
particular graph type used asG must be examined to find its associated type definitions.
The associated types are expressed as type arguments toIncidenceGraphin an inher-
itance declaration. Inferring the associated types from constraints is possible in most
cases, including all cases generated by the translation given here, but is not supported
in the current proposals for Generic C# or Java generics.

101

3.2 Constraint propagation

In many mainstream object-oriented languages, the constraints on the type parameters
to generic types do not automatically propagate to uses of those types. For example,
although a container concept may require that its iterator type model a specified iterator
concept, any generic algorithm using that container concept will still need to repeat the
iterator constraint. This is done for error checking: instances of an interface must always
be given correct type parameters, even within the definitionof a generic method. The
burden of this is that the check is done when a generic method is defined, rather than
when it is used, and so the generic method ends up needing to repeat the constraints of
all of the interfaces which it uses.

For example, without constraint propagation, thefirst neighborfunction from Fig-
ure 3(a) would need to be written as:

G.Vertex firstneighbor<G>(G g, G.Vertex v)
where G : IncidenceGraph,
whereG.Edge : GraphEdge,
whereG.Edge.Vertex == G.Vertex,
whereG.OutEdgeIterator : IEnumerable<G.Edge> {
return g.out edges(v).Current;

}

The problem with constraint propagation also applies to thetranslated version of
first neighbor(cf. Figure 3(b)):

G Vertex first neighbor<G, G Vertex, GEdge, GOutEdgeIterator>(G g, G Vertex v)
where G : IncidenceGraph<G Vertex, GEdge, GOutEdgeIterator>,
whereG Edge : GraphEdge<G Vertex>,
whereG OutEdgeIterator : IEnumerable<G Edge> {
return g.out edges(v).Current;

}

The additional constraints in these examples merely repeatproperties of the asso-
ciated types ofG which are already specified by theIncidenceGraphconcept. This
greatly increases the verbosity of generic code and adds extra dependencies on the ex-
act contents of theIncidenceGraphinterface, thus breaking the encapsulation of the
concept abstraction.

This is not an inherent problem in subtype-based constraintmechanisms. For exam-
ple, the Cecil language automatically propagates constraints to uses of generic types [8,
§ 4.2]. Constraint propagation is simple to implement: a naı̈ve approach is to automati-
cally copy the type parameter constraints from each interface to each of the uses of the
interface.

3.3 Subclassing vs. subtyping

The subclass relation in object-oriented languages is commonly established in the class
declaration, which prevents later additions to the set of superclasses of a given class.
This is fairly rigid, and as many object-oriented languagesunify subclassing and sub-
typing, the subtype relation is inflexible too. Several authors have described how this

102

inflexibility leads to problems in combining separately defined libraries or components,
and proposed solutions. Hölzle describes problems with component integration and sug-
gests that adding new supertypes and new methods to classes retroactively, as well as
method renaming, be allowed [15]. The Half & Half system [2] allows subtyping decla-
rations that are external to class definitions, as do the Cecil [8] and Sather [26, 27] pro-
gramming languages. Aspect oriented programming systems [21], such as AspectJ [20],
can provide similar functionality by allowing modificationof types outside of their orig-
inal definitions. Structural subtyping does not suffer fromthe same problems. Baum-
gartner and Russo [3], as well as Läufer et al. [22], suggestadding a structural subtyping
mechanism to augment the nominal subtyping tied to the inheritance relation.

Constraint mechanisms more directly supporting concepts,such as Haskell type
classes and ML signatures, do not exhibit the retroactive modeling problem: instance
declarations in Haskell are external to types, and ML signature conformance is purely
structural.

The work cited above is in the context of object-oriented programming, but the use
of the subtyping relation to constrain the type parameters of generic algorithms shares
the same problems. If an existing type structurally conforms to the requirements of a
generic algorithm, but is not a nominal subtype of the required interface, it can not be
used as the type parameter of the algorithm. Current mainstream object-oriented pro-
gramming languages do not provide a mechanism for establishing this relation; types
cannot retroactively be declared to be models of a given concept. This problem of
retroactive modeling is described further in [14]. The research cited above has demon-
strated that retroactive subtyping can be implemented for an object-oriented language.

3.4 Constraining multiple types

Some abstractions define interactions between multiple independent types, in contrast
to an abstraction with a main type and several associated types. An example of this is
the mathematical conceptVectorSpace(more examples can be found in [17]).

concept VectorSpace<V, S> {
V models Field;
S models AdditiveGroup;
V mult(V, S);
V mult(S, V);

}

For this example, it is tempting to think that the scalar typeshould be an associated
type of the vector type. For example, the classmatrix<float> would only havefloat for
its scalar type. However it also makes sense to form a vector space withmatrix<float>
andvector<float> as the vector and scalar types. So in general the scalar type of a
vector space is notdeterminedby the vector type.

It is cumbersome to express multi-parameter concepts usingobject-oriented inter-
faces and subtype-based constraints. One must split the concept into multiple interfaces.

interface VectorSpaceVector<V, S> : AdditiveGroup<V> {
V mult(S);

}

103

interface VectorSpaceScalar<V, S> : Field<S> {
V mult(V);

}

Algorithms that require theVectorSpaceconcept must specify two constraints now
instead of one. For example:

Vector linear combination 2<Vector, Scalar>(Scalar alpha1, Vector v1,
Vector linear combination 2<Vector, Scalar>(Scalar alpha2, Vector v2)

where Vector: VectorSpaceVector<Vector, Scalar>,
whereScalar: VectorSpaceScalar<Vector, Scalar>

{
return alpha1.mult(v1).add(alpha2.mult(v2));

}

In general, if a concept hierarchy has heightn, and places constraints on two types
per concept, then the number of subtype constraints needed in an algorithm is2n , an
exponential increase in the size of the requirement specification. Concept hierarchies of
height from two to five are common in practice, and we have encountered even deeper
hierarchies, but25 is already a large number.

The constraint propagation extension discussed in Section3.2 ameliorates this prob-
lem. TheVectorSpaceScalar interface is attached to theVectorSpaceVector interface
by the constraint on the type parameterS:

interface VectorSpaceVector<V, S> : AdditiveGroup<V>

where S : VectorSpaceScalar<V, S>

{
V mult(S);

}

This prevents the exponential increase in the number of requirements, but the interface
designer must still split up concepts in an arbitrary fashion. This problem could be over-
come by an automatic translation of multi-parameter concepts into several interfaces,
as done above. Thelinear combination2 algorithm shown above needs only a single
constraint now.

Vector linear combination 2<Vector, Scalar>(Scalar alpha1, Vector v1,
Vector linear combination 2<Vector, Scalar>(Scalar alpha2, Vector v2)

where Vector: VectorSpaceVector<Vector, Scalar> {
return alpha1.mult(v1).add(alpha2.mult(v2));

}

4 Conclusion

The main contribution of this paper is to provide a detailed analysis of subtype-based
constraints in relation to generic programming. We survey arange of alternatives for
constrained parametric polymorphism, including subtype-based constraints in object-
oriented languages. We identify problems that hinder effective generic programming in
mainstream object-oriented languages, and pinpoint the causes of the problems. Some

104

of the surveyed alternatives, such as concepts, ML signatures, and Haskell type classes,
do not exhibit these problems. Based on these alternatives,we describe solutions that fit
within the context of a standard object-oriented language.We describe an extension to
C# that adds support for accessing and constraining associated types, constraint propa-
gation, and multi-parameter concepts. We outline a translation of the extended features
to the current Generic C# language.

Acknowledgments

We are grateful to Ronald Garcia for his comments on this paper. This work was sup-
ported by NSF grants EIA-0131354 and ACI-0219884, and by a grant from the Lilly
Endowment. The fourth author was supported by a Department of Energy High Perfor-
mance Computer Science Fellowship.

105

Bibliography

[1] M. H. Austern. Generic Programming and the STL. Professional computing
series. Addison-Wesley, 1999.

[2] G. Baumgartner, M. Jansche, and K. Läufer. Half & Half: Multiple Dispatch
and Retroactive Abstraction for Java. Technical Report OSU-CISRC-5/01-TR08,
Ohio State University, 2002.

[3] G. Baumgartner and V. F. Russo. Signatures: A language extension for improv-
ing type abstraction and subtype polymorphism in C++.Software–Practice and
Experience, 25(8):863–889, August 1995.

[4] K. B. Bruce. Typing in object-oriented languages: Achieving expressibility and
safety. Technical report, Williams College, 1996.

[5] K. B. Bruce, L. Cardelli, G. Castagna, J. Eifrig, S. F. Smith, V. Trifonov, G. T.
Leavens, and B. C. Pierce. On binary methods.Theory and Practice of Object
Systems, 1(3):221–242, 1995.

[6] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded poly-
morphism for object-oriented programming. InProceedings of the fourth interna-
tional conference on functional programming languages andcomputer architec-
ture, 1989.

[7] L. Cardelli and P. Wegner. On understanding types, data abstraction, and poly-
morphism.ACM Computing Surveys, 17(4):471–522, 1985.

[8] G. Chambers and the Cecil Group.The Cecil Language: Specification and Ratio-
nale, version 3.1. University of Washington, Computer Science and Engineering,
Dec. 2002. www.cs.washington.edu/research/projects/cecil/.

[9] W. R. Cook. A proposal for making Eiffel type-safe.The Computer Journal,
32(4):304–311, 1989.

[10] P. Curtis. Constrained quantification in polymorphic type analysis. PhD
thesis, Cornell University, Feb. 1990. www.parc.xerox.com/company/history/
publications/bw-ps-gz/csl90-1.ps.gz.

[11] M. Day, R. Gruber, B. Liskov, and A. C. Myers. Subtypes vs. where clauses:
Constraining parametric polymorphism. InOOPSLA, pages 156–158, 1995.

[12] J. Eifrig, S. Smith, and V. Trifonov. Type inference forrecursively constrained
types and its application to OOP. InProceedings of the 1995 Mathematical Foun-
dations of Programming Semantics Conference, volume 1. Elsevier, 1995.

[13] E. Ernst. Family polymorphism. InECOOP, volume 2072 ofLecture Notes in
Computer Science, pages 303–326. Springer, June 2001.

[14] R. Garcia, J. Järvi, A. Lumsdaine, J. G. Siek, and J. Willcock. A comparative
study of language support for generic programming. InOOPSLA, Oct. 2003. To
appear.

[15] U. Hölzle. Integrating independently-developed components in object-oriented
languages. InECOOP, volume 707 ofLecture Notes in Computer Science, pages
36–55. Springer, July 1993.

[16] M. P. Jones.Qualified Types: Theory and Practice. Distinguished Dissertations
in Computer Science. Cambridge University Press, 1994.

106

[17] S. P. Jones, M. Jones, and E. Meijer. Type classes: an exploration of the design
space. InHaskell Workshop, June 1997.

[18] D. Kapur and D. Musser. Tecton: a framework for specifying and verifying generic
system components. Technical Report RPI–92–20, Department of Computer Sci-
ence, Rensselaer Polytechnic Institute, Troy, New York 12180, July 1992.

[19] A. Kershenbaum, D. Musser, and A. Stepanov. Higher order imperative program-
ming. Technical Report 88-10, Rensselaer Polytechnic Institute, 1988.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ.Lecture Notes in Computer Science, 2072:327–355, 2001.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In M. Akşit andS. Matsuoka, editors,
ECOOP, volume 1241 ofLecture Notes in Computer Science, pages 220–242,
June 1997.

[22] K. Läufer, G. Baumgartner, and V. F. Russo. Safe structural conformance for Java.
Computer Journal, 43(6):469–481, 2001.

[23] B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms in
CLU. Communications of the ACM, 20(8):564–576, 1977.

[24] O. L. Madsen and B. Moller-Pedersen. Virtual classes: apowerful mechanism in
object-oriented programming. InOOPSLA, pages 397–406. ACM Press, 1989.

[25] N. C. Myers. Traits: a new and useful template technique. C++ Report, June
1995.

[26] S. M. Omohundro. The Sather programming language.Dr. Dobb’s Journal,
18(11):42–48, October 1993.

[27] Sather home pages. www.icsi.berkeley.edu/∼sather/.
[28] J. G. Siek, L.-Q. Lee, and A. Lumsdaine.The Boost Graph Library User Guide

and Reference Manual. Addison Wesley Professional, 2001.
[29] J. G. Siek and A. Lumsdaine. A modern framework for portable high performance

numerical linear algebra. InModern Software Tools for Scientific Computing.
Birkhäuser, 1999.

[30] A. Stepanov. The Standard Template Library — how do you build an algorithm
that is both generic and efficient?Byte Magazine, 20(10), Oct. 1995.

[31] A. A. Stepanov and M. Lee. The standard template library. Tech-
nical Report HPL-94-34(R.1), Hewlett-Packard Laboratories, Apr. 1994.
(http://www.hpl.hp.com/techreports).

[32] K. K. Thorup. Genericity in Java with virtual types. InECOOP, volume 1241 of
Lecture Notes in Computer Science, pages 444–471, 1997.

[33] United States Department of Defense.The Programming Language Ada: Refer-
ence Manual, ANSI/MIL-STD-1815A-1983 edition, February 1983.

[34] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad-hoc. InACM
Symposium on Principles of Programming Languages, pages 60–76. ACM, Jan.
1989.

107

108

Top-Down Decomposition in C++

Asher Sterkin and Avraham Poupko

NDS Technologies Israel Ltd.
P.O. Box 23012, Har Hotzvim

Jeruslaem 91235 Israel
asterkin@ndsisrael.com apoupko@ndsisrael.com

Abstract. This article describes how the Top-Down Decomposition approach,
introduced by E.W. Dijkstra, can be implemented effectively, using the C++ pro-
gramming language. A brief outline of the Top-Down Decompositions process,
its advantages, and the most common misconceptions about this approach are
presented. The role of C++ language features such as templates, and generic al-
gorithms is discussed. Prime Number Generator exercise is used for illustrative
purposes. The first version is implemented in the most straightforward way suit-
able for generating of 500 primes. The last version is fully optimized, making it
possible to generate all primes within the 32-bit range.

1 Introduction

The objective of this paper is to demonstrate how the basic Top-Down Decomposition
approach could be applied, using the C++ programming language, the C++ Standard
Library, and Generic Programming approach.

The materials of this paper were used as a basis for anAdvanced C++ Programming
course taught by these authors, in the Hadassah Academic College, Jerusalem, as well
as for an internal workshop on the same topics, held in NDS Technologies Israel Ltd.

2 Top-Down Decomposition

Top-Down Decomposition is a way of developing software through a number of itera-
tive steps, in order to increase developer productivity andimprove software quality. This
approach was initially introduced by E.W. Dijkstra [1, 2] asa response to the so-called
”software crisis” of the late 1960s.

The Top-Down Decomposition process could be briefly outlined as follows:

1. Start from a dummy, ’do-nothing,’ program
2. Address the project organization and version control issues
3. At each step:

(a) Implement the smallest possible piece of the program, either adding detail to
the current level of abstraction or introducing a new one

(b) Compile and test
(c) If necessary, re-factor the code for optimization, bug fixes, and improved read-

ability

109

(d) Compile and test
4. Repeat the process until the whole program is completed

This approach provides the following advantages:

– High speed of development
– Small number of errors
– Early integration and testing
– Early demonstration/deployment
– Support for parallel development
– ’Just enough improvements’
– Strong feeling of ’flow’ and accomplishment

The main challenge in applying this approach is the identification of the levels of
abstraction.

3 Top-Down Decomposition Misconceptions

The advantages of Top-Down Decomposition, detailed above,are regarded with skep-
ticism by many software developers because they are wary of incurring the extra over-
head required by introducing abstractions.

The Top-Down Decomposition approach encourages introducing abstraction layers
such that, at each step either a new abstraction layer is introduced or a small portion
of an already existing layer is detailed. Each new abstraction layer requires an inter-
face between itself and the layer above it. The interface is represented as a set of data
structures and functions for manipulating these data structures.

Software developers typically resist introduction of new layers (and their attendant
functions), claiming that the layers incur too much overhead and citing concerns with
run-time efficiency. Additionally, even when they do agree to introduce additional ab-
straction layers, they don’t adhere to the required separation between them - again citing
efficiency. This laxity is exacerbated by allowing shortcuts and jumps through multiple
layers - all the way to the lowest possible one.

These divergences are so ingrained in programming culture that software develop-
ment folklore is full of stories about how thepurist layering approach failed due to
severe performance problems and how significantly better results were achieved with
theclose to hardwareapproach.

The problem with these claims is that they undermine the major goal of the Top-
Down Decomposition: namely, controlled complexity and consequentially, flawless
software. Perhaps the most damage caused by improper addressing of efficiency issues
is to the very skill of using abstraction to fight complexity.

Although layers are used in modern software development practice in the form of
the architectural patternby that name[3], they address the enterprise class software
coarse-grain structuring issues primarily in terms of portability, reuse and packaging.
The whole number of layers is fixed and tends to be quite small (3-5). In other words,
the Layers architectural pattern does help with the software organization but does not
deal at all with the problem and solution themselves.

110

The point is that at a certain level of complexity the abilityto properly introduce
abstraction layers makes the whole difference between possible and impossible, rather
than between nice and ugly or efficient and inefficient. The number of abstraction layers
depends solely on the problem at hand and cannot be prescribed in advance.

Demonstrating how abstraction layers are introduced during the Top-Down Decom-
position process will constitute the central theme of this paper.

As we explain below, the idea engrained in the minds of software developers-that
the Top-Down Decomposition approach is ineffective, is notin fact an inherent flaw in
the Approach. One of the main reasons that TDD is considered to be ineffective is the
lack of proper language constructs.

The remainder of this paper attempts to show that proper use of C++ features, can
allow a developer to achieve the advantages of TDD, without paying the price that is
usually associated with layering. This will be done by presenting examples of correct
Top-Down Decomposition, where indeed the reader can see that there is little or no
runtime overhead.

4 The C++ Programming Language (Commonality and
Variability)

The C++ programming language is a suitable choice due to its strong support for tem-
plates and inline functions, which almost completely eliminate the layering overhead.
Appropriate usage of #define, templates and inline functions reduces the effective run
time cost of many of the layers to near-zero. Additionally, their use makes it easier and
less costly to enforce pure layer separation.

The basic assumption is that certain aspects of each programwill inevitably change
during its lifespan. It’s not a question of whether parts of the program will change, but
”which parts will change, and when: at run-time or at compiletime?” On one hand, we
want to make our programs as general as possible, meaning that our program can be
configured at run time to support all kinds of behavior. This will eliminate the need to
have different programs for different sets of data. On the other hand, the more assump-
tions we are able to make regarding the input, the less we needto evaluate at runtime,
and the more efficient our program can run [4].

Making a decision where a particular variability point has to be reflected is a classi-
cal flexibility vs. efficiency trade-off. The greater the number of variability points that
exist at the run-time, the more the computer resources (suchas CPU and memory) will
be consumed. Using the run-time only variability usually leads to over-designed sys-
tems. The irony is that when some resources are scarce all kinds of ugly optimization
tricks are applied. This in turn would lead to hard coding of some variability points.
Very often, these points are the very points that we would like to leave as run-time
variants.

The C++ feature set encourages the developer to think in two dimensions simul-
taneously: compile time dimension and run-time dimension [4, 5]. For the later, the
whole set of virtual functions, polymorphism and run-time (late) binding mechanisms
is provided in order to achieve a required level of flexibility. C++ is not unique in this
category. Other languages such as Java and C# supply the samelevel of service.

111

However, if changes were to occur only during compilation time, the great promise
of the object-oriented approach may incur an unacceptable overhead for many real ap-
plications. That’s where C++ templates, function overloading, static (early) binding,
and inline functions become very handy. Today, these comprise unique features of C++
1.

The good news about C++ is that it comes with a powerful standard library [6]. This
library significantly simplifies and, to a certain degree, directs the Top-Down Decom-
position process.

The C++ Standard Library contains a group of efficient template-based implemen-
tations of general-purpose containers such asvectorand list, and a group of generic
algorithms such ascopy, search, andsort. Apparently, the C++ generic algorithms turn
out to be the central part of the software development process, providing a set of generic
skeletons that the application-specific code can be stuffedinto. This meshes well with
the Top-Down Decomposition process, as we shall see in the subsequent sections.

5 Prime Number Generator

In order to be able to demonstrate the Top-Down Decomposition approach we will use
this evergreen exercise. Interesting enough, it has been always used for the demon-
strating the Top-Down Decomposition approach by Dijkstra from his first paper on the
subject [1].

6 Problem Statement

Compute and print a table of the first 500 prime numbers, arranged in 10 columns, each
listing 50 prime numbers.

Definition 1. An integer number is a prime if it can be divided wholly (with reminder
0) only by 1 and itself. Example: 3571. 0 and 1 are not considered to be primes.

7 Step 1: Dummy, ’Do Nothing’ Program

The first step is to write a dummy program, which does nothing or almost nothing
and just helps with establishing the development environment. It’s a good time for ad-
dressing the configuration management issues such as build system (make) and version
control.

In the case of the Prime Number Generator its first dummy version will look as
follows:

Although this piece of code indeed does almost nothing, it does provide a firm
foundation for everything that follows. It embodies key decisions, such as coding stan-
dard, text editor, compiler, build-system and version control. Adopting the ’do-nothing’

1 Using C++ does not come for free. Probably the most unfortunate fact about C++ is that’s its
syntax is littered with many complications, the major bulk of which are caused by the need
to be backward compatible with ”C”. A simple, powerful programming language with a clean
syntax is yet to come.

112

dummy program approach is therefore very important in helping make these decisions
as early as possible in the development cycle. Postponing these decisions may entail
much additional work and destabilize the software product.

8 Step 2: Implement the Main Loop

All but the most trivial programs include some form of iteration. In a case of GUI or
Network programs it would be the so-called main message loop. In the case of the Prime
Number Generator we’re illustrating here, it would be a loopover the count of primes
to be generated. At each iteration, one prime number is generated and printed. The most
straightforward way to implement such a loop, using the C++ Standard Library, is as
follows:

Note the use ofgenerate_n algorithm for the prime number generation loop.
In [2] E.W. Dijkstra nominates three basic mental aids required for the software

construction process: enumeration, mathematical induction and abstraction. In the con-
text of to the Prime Number Generator we will deal with these topics in the following
order: mathematical induction, abstraction, and enumeration (see Optimization).

8.1 Mathematical Induction

Mathematical induction has traditionally been associatedeither with repetitive pro-
gramming constructs such as C++while, for anddo-whilestatements. In addition to
their other benefits (see above) the C++ Standard Library algorithms can also help pro-
grammers to abstract out the mathematical induction. In thePrime Number Generator,
the generate_n algorithm provides an abstraction of invoking a generic function
Gen() N-times, sending the result to a generic iterator OutIt. Using this approach we
introduce two new abstractions to be implemented at the nextlayer:

– Generator: to generate one prime at a time
– TabOutIterator: to print one prime number at a time, while applying all required

table-formatting rules

8.2 Abstraction

The new abstraction layer is described in the Primes.h file:
In [2] E.W. Dijkstra strongly argues that each abstraction layer should be treated

as a virtual machine, exposing a set of commands suitable forsolving the problem of
the higher abstraction layer. Three decades later Robert C.Martin has reinforced this
approach by stating theDependency Inversion Principle[7]. In simple words,it’s the
responsibility of the lower layer to implement abstractions defined at the higher level.
Martin’s Dependency Inversion Principle then in effect rejects the conception that the
higher layer is condemned to resolving its problem in terms of abstractions dictated by
the lower layer.

In the case of our Prime Number Generator, thePrimeslayer has to supply basic
abstractions required for the main program layer for its task, namely generating and
printing the first 500 primes

113

Each class of the Primes layer is declared in its own include file in order to facilitate
version control and to reduce the impact of future changes. The Generator.h file for this
step looks as follows:

In order to represent it as a layer the C++ namespace is used. C++ namespaces pro-
vide an effective means of encapsulation, without incurring any performance overhead.
The Primes::Generator class functionality is implementedvia a self-operator, effec-
tively turning this class into afunctor [6]. The Primes:: Generator class is parameter-
ized with the type of prime number, which makes it generic forany underlying types of
numbers. We shall see later how this parameterization helpswith debugging and testing.

The TabOutIterator.h file for this step looks as follows:
The Primes::TabOutIterator class is also parameterized with the prime number type

and encapsulates the table formatting functionality in theform of aniterator [6].
Despite its perceived generic nature this class in fact doesbelong to the Primes

layer, which is responsible for supplying prime number formatting services to the upper
layer. Even if such functionality were available from a 3rd party there are always some
small specifics, which justify this pure layered approach (see the final implementation
of TabOutIterator).

At the completion of this stage, we are able to compile and runthe program. It will
not format the table properly, nor will it generate prime numbers correctly (that will be
handled in the following stages). But we nonetheless have made valuable progress.

9 Step 3: Formatting the Table

We now concentrate on properly formatting the table based onthe number of columns.
To achieve this the assignment operator has to be modified accordingly. This in turn
would require introducing new TabOutIterator private member variables that well keep
tract of column width, number of columns per line and index ofthe last number being
printed. In order to initialize these variables properly the TabOutIterator constructor
has to be modified. Finally, we have to handle a case when the last line of the table is
incomplete. That could be done in the TabOutIterator’s destructor.

The modified Primes::TabOutIterator class looks like as follows:
At this point we have a program that uses a generator to generate primes, and uses

an output iterator to output them. We can now compile the program, and the output will
be formatted correctly. We now need to implement the generator.

10 Step 4: Implementing the Generator

The Primes::Generator class does the following: for each execution of theself-operator,
it returns the next prime number. The most straightforward way of implementing this
is to take the number following the previously found prime and to check its primality.
If it is not a prime, advance to the following number, and so on. This would require
introducing of two new private member variables. The modified Generator.h will look
as follows:

114

Notice how the prime number searching is implemented using the find_if al-
gorithm from the C++ Standard Library. This implementationspecifies just enough de-
tails, deferring the rest of details to the next abstractionlayer called PrimeCandidate. We
shouldn’t concern ourselves about performance at this point, focusing instead on cor-
rectness and compactness of the solution. The optimizationissues could be addressed
later in the development process should the need arise. The new PrimeCandidate.h file
looks as follows:

Its structure is very similar to that of Primes.h and includes files specifying particu-
lar classes belonging to this layer. The CandidateIterator.h file looks like this:

The PrimeCandidate::Iterator class encapsulates a prime candidate in a form ofit-
erator [6]. The initial implementation uses, as candidates, all numbers of the specified
type starting from 1. Note that the PrimeCandidate::Iterator class is also parameterized
with the type of prime number. The PrimalityTester.h file looks as follows:

By the end of this stage, we have implemented the generator. The generator is im-
plemented in terms of the Iterator that will provide candidates, and in terms of the Tester
that will evaluate those candidates for primality. Our nextstage will be to implement
the Tester.

11 Step 5: Implementing the Tester

The most straightforward implementation of the PrimeCandidate::Tester would be to
divide the prime candidate by all numbers smaller than this candidate, checking if at
least one of them has a zero remainder. The following modifiedversion of the Prime-
Candidate::Tester classself-operatorimplements this algorithm exactly as it sounds:

Note that, like in the case of Primes::Generator, the PrimeCandidate::Tester class is
also implemented as afunctorparameterized with the prime number type. Notice also
the role of C++ Standard library elements:find_if algorithm,modulus<T> func-
tor, andbind1st andnot1 helpers[6], which allow straightforward implementation
of validating whether numbers are prime. The usage of the PrimeCandidate::Iterator to
enumerate the dividers is intentional, since (unless we arein the optimization phase),
the range of dividers we test against, is the same as the rangeof candidates we are
testing.

We now have a fully functional program that will generate prime numbers, and
format the output. We now go to the optimization phase

12 Optimization

The current solution works well for generating 500 primes orso (takes less than sec-
ond). However, it would be quite slow for generating 5000 prime numbers, and for a
larger number the performance would be unacceptable.

The good part is that the proposed solution does establish a robust and flexible
structure. This structure allows substantial optimization, primarily through the code
specialization rather than through code complication.

No less important is the fact that the whole optimization process can be broken into
a number of steps, with each step addressing a single specificaspect of the program.

115

According to thejust-enough improvementprinciple of Top-Down Decomposition the
next step of optimization would be conducted only if the previous step has been proven
to be insufficient and there is no other way to prove it but to measure the performance.
For the sake of prime number generator we will use a simpleprogress_timer class
supplied as a part of the C++ Boost2 Timer library [8]. Theprogress_timer class
”automatically measures elapsed time, and then on destruction displays an elapsed time
message”. The main program has to be modified as follows:

To improve the Prime Number Generator’s performance, we could modify it in one
or both of the following directions:

1. Reduce the number of candidates
2. Reduce the number of dividers

Each optimization will be implemented in one or more separate steps below.

Note 1. This exercise of optimizing the Prime Number Generator is going to empha-
size a very important fact about requirements changing. Theproblem is not that re-
quirements are changing. Had we known from the very beginning, that we would have
to calculate all primes within the 32-bit, we could have written the program without
applying any specific methodology. The problem is that requirements are constantly
changing in unpredictable directions. The market (customers, suppliers, and competi-
tors) do not really care what we did or did not do prepare for inour software. The
can and will change the requirements based on their own needs. Under these circum-
stances the requirements are constantly in various and unpredictable directions. This
could be very frustrating for developers that in that it typically will very soon convert
what was initially elegant software code into un-maintainable heap. What we are going
to demonstrate, is that the Top Down Decomposition approachleads to a very resilient
code structure, from the very beginning prepared for a very wide range of changes.
This is due to the fact, that at every step we are actually forming a ”family of related
programs” [2]. By a certain degree of irony we can build this family because ”certain
aspects of the given problem statement are ignored at the beginning” [2].

13 Step 6: Reduce the Number of Candidates

To reduce the number of candidates, we may choose to test onlythroddnumbers.

Definition 2. Throdd numbers are numbers that are divisible neither by 2, nor by 3
[1].

The throdd number concept is easily encapsulated within the PrimeCandi-
date::Iterator class, with almost full transparency for the rest of the program. Getting
the nextthroddnumber is implemented within the increment (++) operator asfollows:

The purpose of the nestedfix_vals type will be explained later. To work prop-
erly, the program must treat the numbers 2 and 3 in a special way. There are two possible
ways to implement this special treatment:

2 The C++ Boost Library is a collection of portable C++ libraries, which ”work well with the
C++ Standard Library” and ”are suitable for eventual standardization”.

116

1. Within the operator ++() member function
2. Outside of the PrimeCandidate::Iterator class

The difference is subtle, but important. Implementing a special treatment within the
operator ++() seems to be the most straightforward and natural. It also allows hiding all
implementation details from higher layer, which seems to bethe primary goal of Top
Down Decomposition. Sounds OK, right? Well . . . , not exactly.

In order to understand why it’s not so straightforward we need to consider the third
mental aid mentioned at the beginning of this exercise: enumeration.

13.1 Enumeration

By enumeration we understand analyzing of individual casesto be handled separately.
Within the programming languages realm enumeration is implemented using the se-
quence (semicolon ’;’ in C++) andif-then-else statements. As Dijkstra stated it
in [2], enumeration works well only ”under the severe boundary condition”. In other
words the number of special cases to be analyzed must be small. This is especially true
for the if-then-else statements.

Contrary to the common approach, where these differences are implemented by
means ofif-then-else constructs within inner classes, we propose raising them
to the topmost level. In many cases that would allow replacing the if-then-else
statements with a sequence. This in turn allows such implementation of the inner classes
that relays solely on pre-conditions and avoids paranoiac repetitive checks of boundary
conditions. To sum, rising the constructs to the topmost level reduces complexity and
improves performance.

To a certain degree this approach was reflected in [12] where Saltzer, Reed and
Clark formulated so-calledend-to-end argument in system designpostulating that:
”. . . functions placed at low levels of a system may be redundant or of little value when
compared with the cost of providing them at that low level”. By costwe have to under-
stand not only computer resources such as memory or CPU, but also the overall system
complexity.

Note 2. This may seem to be a contradiction to the arguments made above in favor
of abstraction. It is not. The major purpose of abstraction is to combat the complexity
that arises from enumeration. If the enumeration occurs at acertain layer it can be dealt
with at this layer - typically though introduction of a new abstraction layer underneath -
and/or may be propagated through the higher layers in order to fine-tune the abstraction
specifications. The very purpose of this process is to come upwith as thin as possible
an interface between two subsequent layers in order to keep each of them as simple
as possible. In our case propagation of special treatment of2 and 3 to the upper layer
does not make itsprogrammingsignificantly more complex, but it does simplify the
PrimeCandidate::Iteratorcomputationsubstantially3.

To achieve that goal a special version ofgenerate_n algorithm is created as
follows:

3 See [2] for the difference betweenprogrammingandcomputation

117

This is a special version ofgenerate_n algorithm, and it acts as interfaceglue
between the main program and the Primes layer. This special version ofgenerate_n
algorithm is implemented using C++ function overloading for Primes::Generator class
and for that reason the main loop did not need to change at all.The Primes.h file is
changed to include the new header file as follows:

The special values 2 and 3 treatment is implemented using theC++ Boost Meta-
Programming Library (MPL) [9], which ”is a C++ template metaprogramming frame-
work of compile-time algorithms, sequences and metafunction classes”.

In implementing the special version ofgenerate_n algorithm we assume that the
overall number of fixed values is small and thus we do not want to handle them in a run-
time loop, but rather prefer to generate a corresponding number of lines of code, which
will send these fixed values to the output iterator one-by-one. It’s for that purpose the
MPL’s version of thefor_each algorithm does exist. It is similar to the C++ Standard
Library for_each , but is evaluated during the compile time. In that specific case it
will generate invocations of thecopy_one inline function that will copy exactly one
fixed value to the output iterator. To properly pass the output iterator and counter by
reference we use the C++ Boost’sbind [10] and ref [11] template functions. The
bind template function is ”a generalization of the standard functionsstd::bind1st
andstd::bind2nd ”. The ref template function allows the ”passing references to
function templates (algorithms) that would usually take copies of their arguments”.

Once we’ve finished with the fixed values special treatment all what we need is to
invoke the C++ Standard Library version ofgenerate_n . In order to achieve a proper
type resolution to prevent recursive calls we again use the C++ Boost’sbind template
function.

The fixed values are organized in a compile-time list using the C++ Boost
MPL’s list_c container [9]. These fixed values naturally belong to the PrimeCandi-
date::Iterator class and are defined as a nested type (see above). The Primes::Generator
class has just to export these fixed values to make them available for thegenerate_n
algorithm. The new version of Primes::Generator class looks as follows:

At this point we optimized our candidate iterator so that it does not supply numbers
that are devisable by 2 or by 3.

14 Step 7: Reduce the Number of Dividers

The optimization applied in the previous step makes the prime number generator per-
form faster (about 75%).This suffices for generating 5000 primes, but is far from being
fast enough for generating say 10000 primes. In order to achieve even better perfor-
mance we have to significantly reduce the number of dividers.

In order to establish the primality of athrodd p, we do not really need to testp
against ALL thethrodsssmaller thenp, it is sufficient that we test against allthrodds
that are smaller then

√
p. If the candidatep does not have anythrodddevisors smaller

then
√

p it is a prime [1].
The new version of the Testerfunctorwill look like this:

118

This simple change offers a significant improvement in run time. Instead of taking
O(n) to test the primality ofn, our program will takeO(

√
n). This change was totally

confined to the Tester function.
It is important to note that at this point the generator has totreat the tester as a

statefull object, which requires the following modification of the Primes::Generator
class:

Note, that we ensure the statefullness of the tester througha combination of the C++
Boost’sbind andref templates [10, 11].

15 Step 8: Use Stored Composites

To even farther reduce the number of dividers we test against, we will store a list of
composite numbers obtained as product of previously generated prime numbers [2].

Note 3. Using the composite numbers eliminates the need for expensive modulus op-
eration. See [2] for more details.

For each previously generated prime numberp, its first composite is stored in a form
of m = p2. To check if a candidatek is a prime, we compare it with each composite
mi created from a primepi , such thatpi ≤

√
k . If the compositemi is less thank , it

should be increased. How much it should be increased by posesan interesting problem,
which we will deal with later.

According to theLinear Search Theorem[2] we could stop the process once we’ve
found the first composite, which is greater thenk . This leads us to an interesting modi-
fication of the PrimeCandidate::Tester class as follows:

This new implementation eliminates thefind_if linear search algorithm com-
pletely and uses thepush_heap andpop_heap algorithms [6]. Now instead of tak-
ing O(

√
n) to test the primality ofn, our program will takeO(log

√
n), which is sub-

stantially faster. We store the composites in thevector container supplied by the C++
Standard Library [6].

Introducing the composite number concept requires a new abstraction layer, which
fits naturally into the existing infrastructure. The Composite.h file looks as follows:

The Primes::Number::Composite class stores the current value of a composite and
its next increment. For each primep its corresponding increment could have beenp, but
that would have generated even composites, which is wasteful. We could have used2 ·p
as our increment, but that would have generated multiples of3. Ideally the composite’s
increment should change in phase with the corresponding prime throdd it was initially
created from.

Example 1. For the prime number 5 the nextthroddsare obtained using 2, 4, 2, . . . as
increments in that order leading to 7, 11, 13, For the prime number 7 the next
throddsare obtained using 4, 2, 4, . . . as increments in that order leading to 11, 13,
17, . . . correspondingly. Accordingly from the prime number5 the composites will be
generated starting from52 = 25 using 10, 20, 10, . . . as increments, while from the
prime number 7 the composites will be generated starting from 72 = 49 using 28, 14,
28, . . . as increments correspondingly.

119

This leads us to the conclusion that the composite’s increment is obtained from
its corresponding prime, which justifies the introduction of a new abstraction called
CandidateValue as follows:

The Primes::Number::Candidate class by itself is built on top of a lower level ab-
straction called Increment, which is defined as follows:

Here we specify two abstractions. The first abstraction is called Primes:: Incre-
ment::Add and is intended for getting the next prime candidate. The second abstraction
is called Primes::Increment::Multiply and is intended forgetting the next composite
number. The both abstractions are tightly coupled togetherand thus are defined in the
same header file4.

Note that the fixed values concept migrated to the Primes::Increment layer. All arith-
metic calculations are performed during compile time usingthe C++ Boost MPL library
[9]. In particular thempl::fold template is used for obtaining a product of fixed val-
ues in compile time. For more details see [9].

Note, that with the exception of a change in the namespace structure there is no
need to modify the Primes::Generator class since the Primes:: Candidate::Tester class
statefullness has already been ensured in the previous step.

The last optimization allows the prime generator to performextremely fast and
makes it suitable for generation of a really large number of primes.

16 Step 9: Calculate All 32-bit Primes

In order to generate all primes within the 32-bit range we need to deal with memory
rather than CPU time optimization. Keeping composite numbers for all primes will put
a huge demand on the cache-memory size. Even if such amount ofmemory is available
it will eventually slow down the algorithm significantly.

The good news is that there is no need to store all composite numbers, but rather
only those, which were created from primes that are less or equal to the square root of
the last prime numberpN .

According to [13] for eachN ≥ 6 theN th prime numberPN can be bound as

N · lnN < PN < N · (lnN + ln lnN) (1)

On the other hand, according to [13] for eachx ≥ 17

π(x) >
x

ln x
(2)

and forx > 1
π(x) < 1.25506 · x

ln x
(3)

,whereπ(x) is the number of primes≤ x . Armed with these formulas we can finally
modify our program to accomplish the task of generating all primes within the 32-bit
range. The number of changes will be negligibly small compared with the challenge.

4 In this implementation we assume that bit test,bit shift andbit inversion operations are cheaper
than a genericaddoperation, which is usually true for typical binary processors such as Intel’s
Pentium.

120

First of all for debugging and development speed process we do not want to deal
with 32-bit range until the very last stage when we are confident with the program cor-
rectness. A more generalized problem statement would soundlike ”generate all prime
numbers for the given type T”. Since all layers are already templetized with the prime
data type, all that is required is to modify themain function such that it will obtain the
actual type as a macro from compiler command line and to useunsigned short
for debugging purposes.

We also need to modify themain function to correctly calculate the column width.
The new version will look as follows:

As we can see the actual work of the column width calculation is delegated to the
Primes::TabOutIterator class, which has to be modified as follows:

This in turn requires an introduction of a newNthPrime template function as
follows:

The customized version of thegenerate_n algorithm has to be modified as fol-
lows:

The new version of thegenerate_n algorithm now operates in three phases:

1. Output the fixed values.
2. Generate enough primes to populate the cache of composites.
3. Generate the remainder of the primes, using the cache.

In order to estimate the number of composites to be stored a new CacheSize
function is introduced as follows:

The Primes::Generator class is modified and now provides twoversions of theself-
operator: one, which will store composites in the cache, and one, which will just use it,
but will handle properly the candidate overflow race condition. The new version of the
Generator.h file looks as follows:

In this version of Primes::Generator the handling of overflow race condition relies
on the fact that the first after overflow (end) value of prime candidate is equal to its first
value, namely 1. To prove this assumption we have to prove that for anyN > 0: 4N −1
is not athrodd, and4N − 3 is a throdd5.

Proof. To prove the first statement we have to prove that for anyN > 0: 4N − 1 is
divisible by either 2 or 3. It’s obviously not divisible by 2,but it is divisible by 3, which
can be proven by induction as follows:

1. for N = 1: 4− 1 = 3
2. for N > 1: 4N − 1 = 3 · 4(N−1) + (4(N−1) − 1)

To prove the second statement we have to prove that for anyN > 0: 4N − 3 is not
divisible by neither 2, nor 3, which is obvious. ⊓⊔

Note 4. This limited arithmetic exercise demonstrates a very common trade-off be-
tween the three types of effort we must always deal with :intellectual, programming
and computational. In this particular case, had we not been willing to pay the price of
the intellectual effort needed to prove that a prime candidate’s end value is equal to its

5 And thus adding 4 to this number will lead to 1

121

first value we would have either been forced to litter the codewith the explicit computa-
tion of the end value or to pay additional CPU cycles on checking if the next candidate
value is less than the previous value. Being aware about his trade - off is extremely
important for making the software development work effective.

The last modification, which is required, is to make public the Store method of
the Primes::Candidate::Tester class in order to allow the Primes::Generator to access it.

17 Summary

The primary goal of Top-Down Decomposition is controlling complexity. Others goals,
such as efficiency and reuse, are of secondary importance andare fully subordinated to
the primary goal. To achieve the required control over complexity, we employ abstrac-
tion. We have shown how, using the C++ Standard Library algorithms we can effectively
abstract the most of the typical iterative processes. When enumerating or doing special
case analysis, pushing the functions to the topmost possible level, yields more efficient
and robust code.

It takes a Pentium-III computer about 2.5 hours to generate all primes within the
32-bit range. The largest 32-bit range prime number is 4294967291. Having all layers
parameterized with the prime number type allows significantreduction of the debugging
time, through temporal usage of theunsigned short type.

122

Bibliography

[1] Dijkstra, E.W.: ”Stepwise program construction”, http://www.cs.utexas.edu/ user-
s/ewd/ewd02xx/ewd227.pdf, February 1968

[2] Dijkstra, E.W.: ”Notes on Structured Programming”, http://www.cs.utexas.edu/
users/ewd/ewd02xx/ewd249.pdf, April 1970

[3] Buschman, F., et al: ”Pattern-Oriented Software Architecture”, John Wiley &
Sons, 1996

[4] Czarnecki K., Eisenecker U.W.: ”Generative Programming: Methods, Tools and
Applications”, Addison-Wesley, 2000

[5] Coplien, J.: ”Multi-Paradigm Design for C++”, Addison-Wesley, 1999
[6] Dinkum C++ Library Reference, http://www.dinkumware.com/manuals
[7] Martin, Robert C.: ”Agile Software Development, Principles, Patterns, and Prac-

tices”, Prentice Hall, 2002
[8] C++ Boost Timer Library: http:://www.boost.org/libs/timer/timer.htm
[9] C++ Boost MPL Library: http:://www.boost.org/libs/mpl/doc/index.htm

[10] C++ Boost Bind Library: http:://www.boost.org/libs/bind/bind.html
[11] C++ Boost Ref Library: http:://www.boost.org/doc/html/ref.html
[12] Saltzer, J.H., Reed, D.P., Clark, D.D.: ”End-to-end Arguments in System Design”,

ACM Transactions on Computer Systems 2, 4, November 1984
[13] Menezes, A.J., Van Oorschot, P.C., Vanstone A.A.: ”Handbook of Applied Cryp-

tography”, CRC Press, 1996

123

124

SOUL and Smalltalk - Just Married
Evolution of the Interaction Between a Logic and an

Object-Oriented Language Towards Symbiosis

Kris Gybels⋆

Programming Technology Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Elsene, Belgium
kris.gybels@vub.ac.be

1 Introduction

TheSmalltalk Open Unification Languageis a Prolog-like language embedded in the
object-oriented language Smalltalk [5]. Over the years, ithas been used as a research
platform for applying logic programming to a variety of problems in object-oriented
software engineering, some examples are: representing domain knowledge explicitly
[3]; reasoning about object-oriented design [15, 14]; checking and enforcing program-
ming patterns [11]; ; checking architectural conformance [16] and making the crosscuts
in Aspect-Oriented Programming more robust [6]. These examples fit in the wider re-
search ofDeclarative Meta Programming, where SOUL is used as a meta language to
reason about Smalltalkcode.

Recently, we explored a different usage of SOUL in connecting business rules and
core application functionality [2], which involves reasoning about Smalltalkobjects.
We found we had to improve on SOUL’s existing mechanism for interacting with those
objects because it was not transparent: it was clear from theSOUL code when rules
were invoked and when messages were sent to objects, vice-versa solving queries from
methods was rather clumsy. Ideally we would like to achieve alinguistic symbiosis
between the two languages: the possibility for programs to call programs written in an-
other language as if they were written in the same [8, 13]. Such a transparent interaction
would make it easy to selectively change the paradigm parts of an application are writ-
ten in: if we find that a Smalltalk method is better written as alogic rule we should be
able to replace it as such without having to change all messages invoking that method.

We will here take a historical approach to describing the SOUL/Smalltalk symbio-
sis. We would like to provide an insight into our motivation for and approach to achieve
the symbiosis by contrasting three distinct stages in its evolution. In a first stage, SOUL
was developed as a direct Prolog-derivate with some additional mechanisms for ma-
nipulating Smalltalk objects as Prolog values. In a second and third stage we explored
alternative mechanisms and a more Smalltalk-fitting syntaxfor SOUL. Interestingly,
when we performed a survey of other combinations of object-oriented and logic pro-
gramming we found we could easily categorize their approaches into one of our three

⋆ Research assistant of the Fund for Scientific Research - Flanders (Belgium) (F.W.O.)

125

”stages”. The following sections discuss the stages in detail and the ”Related Work”
section at the end briefly discusses the survey.

2 Stage 1: Escaping from SOUL

The interaction mechanism found in the original SOUL can best be characterized as an
escape mechanism. But before we go into this, let us make somegeneral points about
this version of SOUL:

Implementation: SOUL is embedded in Smalltalk, meaning it is entirely imple-
mented in it.

Syntax: We assume readers are familiar with Prolog, the differenceswith this lan-
guage and SOUL in this stage are:

Variable notation: in Prolog, variables are written as names starting with a cap-
ital letter, in SOUL they are written as names preceded with aquestion mark,
thusSomething translates to?something .

List notation: in Prolog, square brackets ([]) are used to write lists, these are
replaced with angular brackets in SOUL (< >).

Rule notation: the ’if’ operator:- linking conclusion to conditions is replaced
with the if operator in SOUL.

The combination of Smalltalk’s Meta-Object Protocol and SOUL’s embedding in
Smalltalk lead to the insight that the simplest way to let SOUL programs reason about
Smalltalk code is to give them access to the meta-objects directly. For this reason there
are additional differences with Prolog:

Values: any Smalltalk object (not just the meta-objects) can be bound as a value to a
logic variable.

Syntax: the Smalltalk term, a snippet of Smalltalk code enclosed in square brackets
[] . The Smalltalk code can contain logic variables wherever Smalltalk variables
are allowed.

Semantics: when Smalltalk terms are encountered as conditions in rules, they are
”proven” by executing the Smalltalk code. The return value should be a boolean,
which is interpreted as success or failure of the ”proof”. Smalltalk terms can also
be used as arguments to conditions, then they are evaluated and the resulting value
is used as the value of the argument. Unification deals with Smalltalk objects as
follows: two references to an object unify only if they referto the same object.

Primitive predicates: a primitive predicategenerate can be used to generate ele-
ments of a Smalltalk collection as successive solutions fora variable.

The example set of rules in figure 1 are taken from SOUL’s library for Declarative
Meta Programming and show how Smalltalk terms are used. A predicateclass is
defined which reifies class meta-objects into SOUL; two different rules are defined for
it to deal efficiently with different argument binding patterns. Thesubclass predicate
expresses that two classes are related by a direct subclassing relationship when one is

126

class(?x) if
var(?x),
generate(?x, [System allClasses])

class(?x) if
nonvar(?x),
[?x isClass]

subclass(?super, ?sub) if
class(?sub),
equals(?super, [?sub superclass])

hierarchy(?root, ?child) if
subclass(?root, ?child)

hierarchy(?root, ?child) if
subclass(?root, ?direct),
hierarchy(?direct, ?child)

Fig. 1. Example rules defining predicates for reasoning about Smalltalk programs.

argumentArray := Array with: (Array with: #x with: someClas s).
evaluator := SOULEvaluator eval: ’if hierarchy(?x, ?y)’

withArgs: argumentArray.
results := evaluator allResults.
ysolutions := results bindingsForVariableNamed: #y.

Fig. 2.Code illustrating how the SOUL evaluator is called from Smalltalk and how the results are
retrieved.

the answer to thesubclass message sent to the other. Thehierarchy predicate
extends this to indirect subclassing relationships.

The example rules are indicative for the way SOUL interacts with Smalltalk in this
stage: the use of Smalltalk terms is limited to a small collection of predicates such
asclass andsubclass , which are organized in the so-called ”basic layer”. Other,
more high-level predicates such ashierarchy make use of the predicates in the basic
layer to interact with Smalltalk objects. This organization avoids pollution of the higher-
layer predicates with explicit escape code1. In a way, the basic layer provides a gateway
between the two languages by translating messages to predicates and vice-versa.

The other direction of interaction, from Smalltalk to SOUL,is done through ex-
plicit calling of the SOUL evaluator with the query to be evaluated passed as a string.
Figure 2 illustrates how thehierarchy predicate is to be called. On the second
line, an evaluator object is created by sending the messageeval:withArgs: to
the SOULEvaluator class, the message is passed the query to evaluate and vari-
able bindings as arguments. The variable bindings are passed as an array of variable-

1 Another reason why this is done is to make the higher-layer predicates less dependent on
Smalltalk, so that they may later be used when reasoning about code in other OO languages
[4].

127

object pairs. In the example, the logic variable?x will be bound to the value of the
Smalltalk variablesomeclass , so the query will search for all child classes of that
class. These child classes will then be bound as solutions tothe variable?y . These
solutions can be retrieved by sending anallResults message to the evaluator ob-
ject, which returns a result object. The result object then needs to be sent the mes-
sagebindingsForVariableNamed to actually retrieve the bindings, which are
returned as a collection.

3 Stage 2: Predicates as Messages

A second stage of SOUL-Smalltalk interaction, which we reported on at a previous
multi-paradigm programming workshop [1], aimed at providing more of a transparent
interaction. Our motivation then was especially to improveon the way Smalltalk pro-
grams can invoke queries, and do it in a way that would providelinguistic symbiosis. To
do so, we tried to map invocation of predicates more directlyto the concept of sending
a message.

The term linguistic symbiosis refers to the ability for programs to call programs
written in another language as if they were written in the same. Having this ability
would also imply that transparent replacement is possible:replacing a ”procedure” (=
procedure/function/method/...) in the one language with a”procedure” in the other,
without having to change the other parts of the program that make use of that ”pro-
cedure”. In fact, the term was coined in the work of Ichisugi et al. on an interpreter
written in C++ which could have all of its parts replaced withparts written in the lan-
guage it interprets. Such usage of linguistic symbiosis to provide reflection was further
explored in the work of Steyaert [13].

While these earlier works provided us with solutions, we also had an added problem:
the earlier works dealt with combining two languages founded on the object-oriented
paradigm, while we aimed at combining an object-oriented and a logic language. The
earlier works dealt with mapping a message in the one language to a message in the
other, while we needed to map messages to queries.

To provide a mapping of messages and queries, we had five issues to resolve:

Unbound variables: how does one specify in such a message that some arguments
are to be left unbound? The concept of ’unbound variables’ isforeign to Smalltalk.

Predicate name: how is the name of the predicate to invoke derived from the name of
the message?

Returning multiple variables: how will the solutions be returned when there are
multiple variables in the query?

Returning multiple bindings: if there are multiple solutions for a variable, how will
these be returned?

Receiver: which object will the message be sent to?

We combined the solution for the first two issues by assuming that predicate names,
like Smalltalk messages, would be composed of keywords, onefor each argument. To
specify which variables to leave unbound we adopted a schemefor combining these
keywords into a message name from which that specification can be derived. To invoke a

128

Message Query

Main add: 1 with: 2 to: 3 if Main.add:with:to:(1,2,3)
Main add: 1 with: 2 if Main.add:with:to:(1,2,?res)
Main add: 1 if Main.add:with:to:(1,?y,?res)
Main add if Main.add:with:to:(?x,?y,?res)
Main addwith: 2 if Main.add:with:to:(?x,2,?res)
Main addwithto: 3 if Main.add:with:to:(?x,?y,3)
Main addwith: 2 to: 3 if Main.add:with:to:(?x,2,3)
Main add: 1 withto: 3 if Main.add:with:to(1,?y,3)

Table 1.Mapping a predicate to messages

predicate from Smalltalk one would write the message as: thename of the first keyword,
optionally followed by a colon if the first argument is to be bound and a Smalltalk
expression for the argument’s value, then the second keyword, concatenated to the first
if that one was not followed by a colon, and again itself followed by a colon if needed
for an argument and so on for the other keywords until no more keywords need to
follow which take an argument. This is best illustrated withan example. Table 1 shows
the23 ways of invoking a predicate calledadd:with:to: and the equivalent query
in SOUL.

For the issue of needing a receiver object for the message, wemapped layers to
objects stored in global variables. Because in Smalltalk classes are also objects stored
in global variables, this has the effect of making a predicate-invoking message seem
like a message to a class. The basic layer is for example stored in Basic .

We proposed two alternative solutions to the issues of returning bindings. The first
was simply to return as result of the message a collection of collections: a collection
containing for each variable a collection of all the bindings for that variable. The alter-
native consisted of returning a collection of message forwarding objects, one for each
variable. Sending a message to such a forwarding object would make it send the same
message to all the objects bound to the variable. The idea wasto provide an implicit
mechanism for iterating over all the solutions of a variable, very much how like SOUL
can backtrack to loop over all the solutions for a condition.This however lead to matters
such as whether forwarding objects should also start backtracking over solutions etc.,
so it was discarded as a viable solution. We coined the termparadigm leakto refer to
this problem of concepts ”leaking” from one paradigm to the other.

We also used the predicate and message mapping to replace SOUL’s earlier use of
Smalltalk terms. Instead of using square brackets to escapeto Smalltalk for sending
a message, the same message can now be written more implicitly as an invocation of
a predicate in an object ”pretending to be a SOUL module”. Here, the reverse of the
above translation happens: SOUL will transform the predicate to a Smalltalk message
by associating the arguments of the predicate to the keywords in its name. The predi-
cate’s last argument will be unified with the result of the actual message send. Take the
following example:

if Array.with:with:with:(10,20,30, ?instance),
?instance.at:(2,?value)

129

member(?x, <?x | ?rest>).
member(?x, <?y | ?rest>) if

member(?x, ?rest).

<?x | ?rest> contains: ?x.
<?y | ?rest> contains: ?x if

?rest contains: ?x.

Fig. 3.Comparison of list-containment predicate in classic and new SOUL syntax.

The first condition in the example query will actually be evaluated by sending the
messagewith: 10 with: 20 with: 30 to the classArray . The result of that
message is a newArray instance, which will be bound to the variable?instance .
In the second condition, the messageat: 2 will be sent to the instance and the result,
20 in this case, will be bound to the variable?value .

While in this second-stage SOUL mixing methods and rules is entirely transparent
from a technical standpoint, it is obvious which code is intended to invoke what to a
human interpreter. Technically there is no more need in SOULfor an escape mecha-
nism, and the same language construct is used to invoke rulesand messages. Similarly
in Smalltalk, queries no longer have to be put into strings tolet them escape to SOUL
and can just be written as message sends. However, a Smalltalk programmer would
frown when seeing messages such asaddwith: 2 to: 3 . Furthermore, he would
probably guess that the result of that message would be the value 5, instead it will be a
collection with a collection containing the value 5. The keyword-concatenated predicate
names in SOUL also lead to awkward looking programs in that language.

4 Stage 3: Linguistic Symbiosis?

The next, and currently last, stage in the SOUL-Smalltalk symbiosis uses a new syntax
for SOUL to avoid the clumsy name mappings from the previous stage. For this stage
we also had a specific application for the symbiosis in mind, business rules [2], which
influenced its development in certain respects. One difference is that previously we
wanted to allow Smalltalk programs to call the existing library of SOUL code-reasoning
predicates, while for supporting business applications the idea is rather to use SOUL
to write new rules implementing so-called business rules ofthe application. This also
implies another shift: reasoning about (business) objectsrather than meta objects.

In the new syntax predicates look like message sends. Let us illustrate with an ex-
ample, figure 3 contrasts the classicmemberpredicate with its newcontains: coun-
terpart.

The second rule forcontains: can be read declaratively simply in Prolog-style
as ”for all ?x , ?y and?rest thecontains: predicate over<?y | ?rest> and
?x holds if”. A declarative message-like interpretationcould read ”for all?x , the
answer to the messagecontains: ?x of objects matching<?y | ?rest> is true
if the answer of the object?rest to contains: ?x is true.” Both interpretations
are equivalent, though the second one is really the basis forthe new symbiosis.

130

?product discountFor: ?customer = 10 if
?customer loyaltyRating = ?rating &
?rating isHighRating

Fig. 4.Example of a rule using the equality operator.

Because messages can return values other than booleans, we added another syntactic
element to SOUL to translate this concept to logic programming. The equality sign is
used to explicitly state that ”the answer to the message on the left hand side of= is the
value on the right hand side”. Figure 4 shows an example.

The new syntax has a two-fold impact on how the switching between Smalltalk
and SOUL occurs. It is no longer necessary to employ a complicated scheme with
concatenation of keywords to get the name of a predicate. Another is that there is no
more mapping of objects to SOUL modules and vice-versa, modules were dropped from
SOUL as the concept of having a ”receiver” for a predicate nowcomes as part of the
message syntax.

A Smalltalk program no longer has to send a message to a SOUL module ”pretend-
ing to be an object” to invoke a query. Instead, a switch between the two languages now
occurs as an effect of method and rule lookup: we changed Smalltalk so that when a
message is sent to an object and that object has no method for it, the message is trans-
lated to a query. In SOUL, when a rule is not found for the predicate of a condition, the
condition is translated to a message. This new scheme makes it much easier and much
more transparent to actually interchange methods and rules.

The translation of queries and messages is straightforwardand we’ll simply il-
lustrate with another example. Figure 5 shows a price calculation method on a class
Purchase which loops through all products a customer bought and sums up their to-
tal price minus a certain discount. When thediscountFor: customer message
is sent to the products, Smalltalk will find no method for thatmessage, so it will be
translated to the query:

if ?arg1 discountFor: ?arg2 = ?result

Where?arg1 and?arg2 are already bound to the objects that were passed as ar-
guments to the message. When the query is finished, the objectin ?result is returned
as result of the ”message”. This returning of results is actually a bit more involved, we’ll
discuss it further in the next section.

For the inverse interaction, we can take theloyaltyRating = condition in the
discountFor: rule (fig. 4) as an example. For a small business the loyalty rating
of a customer can simply be stored as a property of the customer object which can be
accessed through theloyaltyRating message. In that case, SOUL will find no rule
for the ”predicate”loyaltyRating and will translate the condition simply to the
messageloyaltyRating which is then sent to the customer object in the variable
?customer . After it returns, the result of the message is unified with the variable
?rating . Of course, for a bigger business we might want to replace thecalculation
of loyaltyRating with a set of more involved business rules which we’d prefer to

131

Purchase instanceVariables: ’shoppingBasket customer’

Purchase>>totalPrice

| totalPrice discountFactor |

totalPrice := 0.
shoppingBasketContents do: [:aProduct |

discountedFactor :=
(100 - (aProduct discountFor: customer)) / 100.

totalPrice :=
totalPrice + (discountFactor * aProduct price).

]

Fig. 5. Example price calculation method on Purchase class

implement with logic programming, for example ”a high rating is given to a customer
when she has already spent a lot in the past few months”. With the transparent symbiosis
such a replacement is easy to do.

5 Limits and Issues

At the end of the ”Stage 2” section, we remarked that our solution then was only tech-
nically transparent, it was rather obvious to a programmer which code was intended to
invoke which paradigm. In the previous section we demonstrated that this is now much
less the case, it is fairly easy now to interchange methods and rules without this becom-
ing obvious. There are however limits to this interchangingand there are still subtle
hints that may reveal what paradigm is invoked. These limitsand issues stem from
differences in programming style between the object-oriented and logic paradigms.

One important style difference between the paradigms is theway multiplicity is
dealt with. In logic programming, there is no difference between using a predicate that
has only one solution and one that has multiple solutions. Inobject-oriented program-
ming there is an explicit difference between having a message return a single object or
a collection of objects (even, or especially, if there’s only one object in that collection).
This difference leads to an issue in how results are returnedfrom queries to Smalltalk,
and one in how predicates and messages are named.

When a Smalltalk message invokes a SOUL query and the query has only one
solution, should the solution object be simply returned or should a singleton collec-
tion with that object be returned? The invoking method may expect a collection of
objects, which would then just happen to contain just a single item, or it may gen-
erally be expecting there to be only one result. It is difficult for SOUL however to
know which is the case. To deal with this we made SOUL return single solutions in a
FakeSingleItemCollection wrapper. TheFakeSingleItemCollection
class implements most of the messages expected of collections in Smalltalk, any other

132

?child ancestor = ?parent if
?child parent = ?parent.

?person ancestor = ?ancestor if
?person parent = ?parent,
?parent ancestor = ?ancestor

Fig. 6. Rules expressing the ancestor relationship between Persons

Person instanceVariables: ’name parent’

Person>>parent
ˆ parent

Person>>name
ˆ name

Person>>printOn: stream

name , ’ descendant of ’ printOn: stream.
self ancestor do: [:ancestor |

ancestor name , ’ and ’ printOn: stream
]

Fig. 7. Instance variables and some methods of the Person class

messages are forwarded to the object that is being wrapped. There is thus an ”automatic
adaptation” to the expectations of the invoking method.

Plurality, or lack thereof, in the names of predicates and messages can cause some
programming style difficulties. Figures 6 and 7 illustrate the modeling of persons and
their ancestral relations through a class and some logic rules. Invoking these rules from
theprintOn: method is however awkward: it is quite natural for a logic programmer
to write the relationship as ”ancestor” even though there will be multiple ancestors
for each Person, the object-oriented programmer would however prefer to write the
plural ”ancestors” to indicate that a collection of resultsis expected. One solution to this
problem is to implement a rule forancestors which simply maps toancestor , this
would however defeat the purpose of having an automatic mapping of messages and
queries. A potential solution could be to take this style difference into account when
doing the mapping by adding or removing the suffix-swhen needed.

When comparing the stage 2 and stage 3 symbiosis, stage 3 may seem more limited
in the variables that can be left unbound when invoking queries from Smalltalk. In stage
2 the mapping of predicate names to message names implicitlyalso indicated which
variables to leave unbound, while in stage 3 the mapping of messages to queries only
leaves unbound the result variable, the one on the right handside of the equality sign
in the query. Actually, we did implement a means for leaving other variables unbound

133

as well. We changed the way Smalltalk deals with temporary variables to allow for the
following code to be written:

| products customers discounts |

discounts := products discountFor: customers

Normally the Smalltalk development environment would warnthat this code uses
temporary variables before they are assigned. Now however,the messageproducts
discountFor: customers will result in the query:

if ?arg1 discountFor: ?arg2 = ?result

Where all of?arg1 , ?arg2 and ?result are left unbound. When the query
is finished, the result of the message will be as described earlier and additionally the
temporary variablesproducts andcustomers will also be assigned the solutions
of the variables?arg1 and?arg2 .

This leaving unbound of temporary variables is however another example of a para-
digm leak, it is quite unnatural code for a Smalltalk programmer to write. We consider it
as something that should be used with care and preferably avoided. While in stage 2 the
equivalent mechanism seemed most necessary because the motivation was to allow ac-
cess to allexistingSOUL predicates, our focus shift to implementingnewbusiness rules
makes it less necessary: its better to design the rules differently. Nevertheless many of
the rules will be designed to be used from other rules, not to be replaced with meth-
ods and callable in a multi-way fashion. On occasion, these rules may need to be used
directly from a method, so we kept the unbound temporaries mechanism in place.

There is also a limitation in leaving arguments unbound the other way around: when
translating a condition to a message, all of its arguments are expected to be bound.
SOUL will currently generate an error otherwise. It would bepossible though to at
least deal with the ”receiver” argument of the condition in amore logic-like way: when
it is unbound, SOUL could send the message to some random object from memory
which support a method for the message. If the message’s result is true, the object is a
solution for the ”receiver” variable. On backtracking all of the other objects supporting
the message would be tried. A problem here would be the accidental invocation of
object-mutating messages due to polymorphism: when posingthe query?game draw
we may simply be interested in all chess games that ended in a draw but may wind
up also drawing all graphical objects on the screen. In practice though this may not
be so much of a problem as normally the messages invoked from SOUL would have a
keyword ”is” or ”has” in their name because they are written as invocation of predicates,
and it is a convention normally applied by Smalltalk programmers as well.

6 Related work

We examined several existing systems which were designed orcould be used for busi-
ness rule development and in which object-oriented and logic programming are com-
bined [2]. The interaction mechanisms we encountered fit in one of three categories

134

similar to the three stages we discussed here: use of an escape mechanism, some ex-
plicit mapping of predicates and methods or a syntactic and semantic integration of the
two languages. We limit our discussion here mostly to a few systems that aim for the
third category as well.

NéOpus also extends Smalltalk with logic programming, though with production-
rule based logic rather than proof-based logic [12]. Rules consist of conditions and ac-
tions, rather than conclusions, which are respectively expressed as boolean messages to
objects and state-changing messages to objects. The concept of a ”conclusion” as some-
thing separate from a direct effect on the state of objects isthus dropped. Rules are also
not invoked through queries, but rather are triggered by changes in the state of objects
and there is no backtracking to generate multiple solutions. This means that some of the
issues we had to deal with do not occur in NéOpus: the problems of mapping predicates
and methods, returning of multiple results etc. Pachet in fact argues against adding back-
ward chained inferencing to NéOpus because he finds there’sa contradiction between
the desire to use the OO language to express rules in and allowbackward chaining [12],
which may come down to our issues. Note that we made the rule language resemble the
object-oriented one as closely as possible and needed to allow for symbiosis, we did not
simply use the OO language directly to express rules. Besides what form of chaining
to use, Pachet also discusses other questions which we had toresolve as well. Most
importantly what happens to pattern matching and object encapsulation. Often in logic
programming a data structure is accessed directly through unification of its constituent
parts. In some of the other systems we examined, like CommonRules [7] , this is still
done this way by mapping objects to predicates with an argument for each instance
variable. In SOUL, as in NéOpus, we chose to uphold object encapsulation and only
allow accessing objects through message sending.

LaLonde and Van Gulik used Smalltalk’s reflection to turn ordinary methods into
backtracking methods [10]. They built a small framework2 to support the backtracking
methods. Most important in there is a message which makes itscalling method return
with a certain value but remembers the calling point, the method can then be made to
resume execution from that point on. This is achieved by exploiting Smalltalk’s ability
to access the execution stack from any method. The backtracking takes care of undoing
changes to local variables, though not to instance variables and globals . Local variables
are thus used to simulate logic variables, but they are assigned rather than unified and
there is no simulation like our unbound temporaries for calling methods with some
arguments left unbound, so backtracking methods are no fullsimulation of logic rules.
Despite the similarities in the use of Smalltalk expressions, programming in this system
seems quite different from programming in symbiotic SOUL.

Kiev [9] extends Java with logic rules, which can be added directly to classes and
called through message sending. To call a rule with unbound arguments, one passes
an empty wrapper object as argument which will then be bound by the rule. A new
for-construct can be used to iterate over all solutions. There is no equivalent for our
equality operator construct, calling a rule from a method asa message always returns
a boolean to indicate success or failure. This is a subtle butimportant difference with

2 Small enough to have the full code listed in their paper.

135

symbiotic SOUL: returning objects from rules requires the use of sending a message
with unbound arguments, making calling rules not as transparent.

7 Summary and Conclusions

We presented the history of a combination of Smalltalk with alogic language. Three
distinct stages appeared in its evolution of the interaction between the two languages
which we also encountered in studying other combinations ofobject-oriented and logic
programming: a stage where the languages could bind each other’s values to variables
and manipulate these values by ”escaping” to the other language, a stage where the es-
cape mechanism was made more transparent by an automatic mapping of predicates and
methods and the current final stage in which the syntax of the logic language has been
adapted to that of the host language to allow not only for technical but programming
style transparency as well. The aim was to achieve a linguistic symbiosis so that meth-
ods and rules can be easily and transparently interchanged.This is not just of theoretical
interest but has an application in the development of business rule applications: an ex-
isting application without business rule separation may need to be turned into one that
does, or new developments in the policies of the business maymake it more interesting
to turn methods into rules.

We compared our earlier and current solution for such issuesas how to map mes-
sages and queries, return multiple results from a query to Smalltalk etc. There are un-
fortunately still some minor issues to resolve such as how todeal properly with the
difference in use of plurality in names between the two paradigms and avoiding the
invocation of state-changing messages. Nevertheless we have found the current version
of symbiotic SOUL to be a great improvement over previous versions.

136

Bibliography

[1] Johan Brichau, Kris Gybels, and Roel Wuyts. Towards a linguistic symbiosis of
an object-oriented and logic programming language. In Jörg Striegnitz, Kei Davis,
and Yannis Smaragdakis, editors,Proceedings of the Workshop on Multiparadigm
Programming with Object-Oriented Languages, 2002.

[2] Maja D’Hondt and Kris Gybels. Linguistic symbiosis for the automatic connec-
tion of business rules and object-oriented application functionality. (to appear),
2003.

[3] Maja D’Hondt, Wolfgang De Meuter, and Roel Wuyts. Using reflective logic
programming to describe domain knowledge as an aspect. InFirst Symposium on
Generative and Component-Based Software Engineering, 1999.

[4] Johan Fabry and Tom Mens. Language-independent detection of object-oriented
design patterns. InProceedings of the European Smalltalk User Group’s confer-
ence, 2003. (Conditionally accepted).

[5] Adele Goldberg and Dave Robson.Smalltalk-80: the language. Addison-Wesley,
1983.

[6] Kris Gybels and Johan Brichau. Arranging language features for more robust
pattern-based crosscuts. InProceedings of the Second International Conference
of Aspect-Oriented Software Development, 2003.

[7] IBM. Business rules for electronic commerce: Project atIBM T.J. Watson re-
search, 1999. http://www.research.ibm.com/rules/.

[8] Yuuji Ichisugi, Satoshi Matsuoka, and Akinori Yonezawa. Rbcl: a reflective
object-oriented concurrent language without a runtime kernel. In IMSA’92 In-
ternational Workshop on Reflection and Meta-Level Architectures, 1992.

[9] Maxim Kizub. Kiev language specification, July 1998.
http://www.forestro.com/kiev/kiev.html.

[10] Wilf R. LaLonde and Mark Van Gulik. Building a backtracking facility for
Smalltalk without kernel support. InProceedings of the conference on Object-
Oriented Languages, Systems and Applications. ACM Press, 1988.

[11] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development
through declaratively codified programming patterns. InProceedings of the 13th
SEKE Conference, 2001.

[12] Francois Pachet. On the embeddability of production rules in object-oriented sys-
tems.Journal of Object-Oriented Programming, 8(4), 1995.

[13] Patrick Steyaert.Open Design of Object-Oriented Languages. PhD thesis, Vrije
Universiteit Brussel, 1994.

[14] Roel Wuyts. Declarative reasoning about the structureof object-oriented systems.
In Proceedings of TOOLS-USA 1998, 1998.

[15] Roel Wuyts.A Logic Meta Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

[16] Roel Wuyts and Kim Mens. Declaratively codifying software architectures using
virtual software classifications. InProceedings of TOOLS-Europe 1999, 1999.

137

138

Unifying Tables, Objects and Documents

Erik Meijer1, Wolfram Schulte2, and Gavin Bierman3

1 Microsoft Corporation, USA.emeijer@microsoft.com
2 Microsoft Research, USA.schulte@microsoft.com

3 Microsoft Research, UK.gmb@microsoft.com

Abstract. This paper proposes a number of type system and language exten-
sions to natively support relational and hierarchical datawithin a statically typed
object-oriented setting. In our approach SQL tables and XMLdocuments become
first class citizens that benefit from the full range of features available in a modern
programming language like C♯ or Java. This allows objects, tables and documents
to be constructed, loaded, passed, transformed, updated, and queried in a unified
and type-safe manner.

1 Introduction

The most important current open problem in programming language research is to in-
crease programmer productivity, that is to make it easier and faster to write correct
programs [29]. The integration of data access in mainstreamprogramming languages is
of particular importance—millions of programmers struggle with this every day. Data
sources and sinks are typically XML documents and SQL tablesbut they are currently
rather poorly supported in common object-oriented languages.

This paper addresses how to integrate tables and documents into modern object-
oriented languages by providing a novel type system and corresponding language ex-
tensions.

1.1 The need for a unification

Distributed web-based applications are typically structured using a three-tier model that
consists of amiddle tier that contains the business logic that extracts relational data
from adata services tierand processes it into hierarchical data that is displayed inthe
user interface tier(alternatively, in a B2B scenario, this hierarchical data might simply
be transferred to another application). The middle tier is typically programmed in an
object-oriented language such as Java or C♯.

As a consequence, middle tier programs have to deal with relational data (SQL
tables), object graphs, and hierarchical data (HTML, XML).Unfortunately these three
different worlds are not very well integrated. As the following ADO.Net based example
shows, access to a database usually involves sending a string representation of a SQL
query over an explicit connection via a stateful API and theniterating over a weakly
typed representation of the result set:

139

SqlConnection Conn = new SqlConnection(...);
SqlCommand Cmd = new SqlCommand

("SELECT Name, HP FROM Pokedex", Conn);
Conn.Open();
SqlDataReader Rdr = Cmd.ExecuteReader();

HTML or XML documents are then created by emitting document fragments in
string form, without separating the model and presentation:

while (Rdr.Read()) {
Response.Write("<tr><td>");
Response.Write(Rdr.GetInt32(0));
Response.Write("</td><td>");
Response.Write(Rdr.GetString(1));
Response.Write("</td></tr>");

}

Communication between the different tiers using untyped strings is obviously very
fragile with lots of opportunities for silly errors and no possibility for static checking.
In fact, representing queries as strings can be a security risk (the so-called ‘script code
injection’ problem). Finally, due to the poor integration,performance suffers badly as
well.

1.2 Previous attempts

It is not an easy task to gracefully unify the worlds of objects, documents and tables,
so it should not come as a surprise that no main-stream programming language has yet
emerged that realizes this vision.

Often language integration only deals with SQLor with XML but not with both [4,
14, 6, 9, 18]. Alternatively they start from a completely newlanguage such as XQuery or
XDuce [3, 12], which is a luxury that we cannot afford. Approaches based on language
binding using some kind of pre-compiler such as XSD.exe, Castor, or JAXB do not
achieve a real semantic integration. The impedance mismatch between the different
type systems then leads to strange anomalies or unnatural mappings. Another popular
route to integrate XML and SQL is by means of domain specific embedded languages
[13] typically using a functional language such as Scheme orHaskell [26, 27, 22, 23,
19, 15, 10, 32, 33, 4] as the host. In our experience however, the embedded domain
specific language approach does not scale very well, and it isparticularly difficult to
encode the domain specific type systems [30] and syntax into the host language.

1.3 The Xen solution

The examples above demonstrate that at a foundational levelthere is an impedance mis-
match between the XML, SQL and object data-models. In our opinion the impedance
mismatch is too big to attempt a complete integration. (The impedance mismatch be-
tween the object and XML data-models is treated in detail in acompanion paper [25].)

140

Given these problems, our approach is to first take as our starting point the type
system and object data-model of the middle tier programminglanguage. This is the
computational model that programmers are familiar with, and that is supported by the
underlying execution engine.

We look at XML fidelity in terms of being able to serialize and deserialize as many
possible documents that are expressible by some given XML schema language, and not
at how closely we match one of the XML data models in our programming language
once we have parsed an XML document. In other words, we consider XML 1.0 as
simply syntax for serialized object instances of our enriched host language. For SQL
fidelity we take the same approach: we require that SQL tablescan be passed back and
forth without having the need to introduce additional layers like ADO.NET.

Hence, rather than trying to blindly integrate the whole of the XML and SQL data-
models, we enrich the type system of the object-oriented host language (in our case
C♯) with a small number of new type constructors such as streams, tuples, and unions.
These have been carefully designed so that they integrate coherently with the existing
type system.

On top of these type system extensions, we then add two new forms of expressions
to the base language: generalized member access provides path expressions to traverse
hierarchical data, and comprehension queries to join elements from different collec-
tions. Rather than limiting comprehension queries to tabular data or path expressions
on hierarchical data, we allow both forms of expressions to be used on any collection,
no matter whether the data is in-memory or remotely stored ina database. To seamlessly
handle queries on both on remote data sources and local data sources we use similar de-
ferred execution implementation techniques as in HaskellDB [19]. Depending on the
data source, the result of a query is either a materialized collection or a SQL program
that can be sent to the database.

The result is Xen, a superset of C♯ that seamlessly blends the worlds of objects,
tables and documents. The code fragment below shows how Xen is able to express the
same functionality that we have seen previously.

tr * pokemon =
select <tr><td>{Name}</td><td>{HP}</td></tr>
from Pokedex;

Table t =
<table><tr><th>Name</th><th>HP</th></tr>{pokemon} </ table>;

Response.Write(t);

In Xen, strongly typed XML values are first-class citizens (i.e. the XML literal
<table>...</table> has type staticTable) and SQL-styleselect queries are
built-in. Xen thus allows for static checking, and because the SQL and XML type sys-
tems are integrated into the language, the compiler can do a better job at generating
efficient code that might run on the client but which also might be sent to the server.

Although Xen by design does not support the entirety of the XML stack and some
of the more advanced features of SQL, we believe that our typesystem and language ex-
tensions are rich enough to support many potential scenarios. For example we have been

141

able to program the complete set of XQuery Use Cases, and several XSL stylesheets,
and we can even serialize the classic XML Hamlet document without running into any
significant fidelity problems.

The next sections show how we have grown a modern object-oriented language (we
take C♯ as the host language, but the same approach will work with Java, Visual Basic,
C++, etc.) to encompass the worlds of tables and documents byadding new types (§2)
and expressions (§3).

2 The Xen type system

In this section we shall cover the extensions to the C♯ type system—streams, tuples,
discriminated unions, and content classes—and for each briefly consider the new query
capabilities. In contrast to nominal types such as classes,structs, and interfaces, the new
Xen types are mostlystructuraltypes, like arrays in Java or C♯.

We will introduce our type system extensions by example. Formal details of the Xen
type system can be found in a companion paper [24].

2.1 Streams

Streams represent ordered homogeneous collections of zeroor more values. In Xen
streams are most commonly generated byyield return blocks. Stream generators
are like ordinary methods except that they may yield multiple values instead of returning
a single time. The following methodFrom generates a finite stream of integersn,n +
1, ...,m:

static int * From(int n, int m){
while(n<=m) yield return n++;

}

From the view of the host language, streams are typed refinements of C♯’s iterators.
Iterators encapsulate the logic for enumerating elements of collections.

Given a stream, we can iterate over its elements using C♯’s existingforeach state-
ment. For instance, the following loop prints the integers fromn to m.

foreach(int i in From(n,m)) { Console.WriteLine(i); }

Streams and generators are not new concepts. They are supported by a wide range
of languages in various forms [11, 20, 17, 21, 28]. Our approach is a little different in
that:

– We classify streams into a hierarchy of streams of differentlength.
– We automatically flatten nested streams.
– We identify the valuenull with the empty stream.

To keep type-checking tractable, we restrict ourselves to the following stream types:
T∗ denotes possibly empty and unbounded streams,T? denotes streams of at most
one element, andT ! denotes streams with exactly one element. We will useT? to

142

represent optional values, where the non-existence is represented by the valuenull
and analogously we useT ! to represent non-null values.

The different stream types form a natural subtype hierarchy, where subtyping cor-
responds to stream inclusion We writeS <: T to denote that typeS is a subtype of
type T and we writeS ∼= T to denote thatS is equivalent toT . Xen observes the
axiomsT ! <: T , T <: T? andT? <: T∗. For instanceT? <: T∗ reflects the fact
that a stream of at most one element is also a stream of at leastzero elements. Non-
stream typesT into the subtype hierarchy by placing them between non-nullvaluesT !
and possibly null valuesT?. Thus allows for example to assign the value3 to the type
int? .

Like C♯ arrays, streams are covariant. For unbounded streams the upcast of the
elements is via an identity conversion. This restriction guarantees that upcasts of
streams are always constant time, and that the object identity of the stream is main-
tained. SupposeButton is a subclass ofControl , then this rule says thatButton *
is a subtype of a stream of controlsControl * . If the conversion is not the iden-
tity, we have to explicitly copy the stream. For example, we can convert stream
xs of type int * into a stream of typeobject * using the apply-to-all expression
xs.{ return (object)it; } . Optional and non-null types are covariant with
respect to arbitrary conversions on their element types.

In Xen streams are always flattened, there are no nested streams of streams. At the
theoretical level this implies a number of type equivalences, for exampleT∗? ∼= T∗
reflects the fact that at most one stream of zero or more elements flattens into a single
stream of zero or more elements.

Flattening of stream types is essential to efficiently deal with recursively defined
streams. Consider the following recursive variation of thefunctionFrom that we de-
fined previously:

int * From(int n, int m){
if (n>m) {

yield break;
} else {

yield return n++; yield return From(n,m);
}

}

The recursive callyield return From(n,m); yields a stream forcing the type
of From to be a nested stream. The non-recursive callyield return n++; yields
a single integer thus forcing the return type ofFrom to be a normal stream. As the type
system treats the typesint * andint ** as equivalent this is type-correct.

Without flattening we would be forced to copy the stream produced by the recursive
invocation, leading to a quadratic instead of a linear number of yields :

int * From(int n, int m){
if (n >m) {

yield break;
} else {

yield return n++;

143

foreach(int it in From(n,m)) yield return it;
}

}

Flattening of stream types doesnot imply that the underlying stream is flattened via
some coercion, every element in a stream isyield -ed at most once. Iterating over a
stream effectively perform a depth-first traversal over then-ary tree produced by the
stream generators.

Non-nullness.The typeT ! denotes streams with exactly one element, and since we
identify null with the empty stream, this implies that values of typeT ! can never be
null .

Being able to express that a value cannot benull via the type system allowsstatic
checking fornull pointers (see [7, 8] for more examples). This turns many (potentially
unhandled) dynamic errors into compile-time errors.

One of the several methods in the .NET base class library thatthrows
an ArgumentNullException when its argument isnull is the function
IPAddress.Parse . Consequently, the implementation ofIPAddress.Parse
needs an explicitnull check:

public static IPAddress Parse(string ipString) {
if (ipString == null)

throw new ArgumentNullException("ipString");
...

}

Dually, clients of IPAddress.Parse must be prepared to catch an
ArgumentNullException . Nothing of this is apparent in the type of the
Parse method in C♯. In Java the signature ofParse would at least show that it
possibly throws an exception.

It would be much cleaner if thetypeof IPAddress.Parse indicated that it ex-
pects itsstring argument to be non-null :

public static IPAddress Parse(string! a);

Now, the type-checker statically rejects any attempt to pass a string that might benull
to IPAddress.Parse .

2.2 Anonymous structs

Tuples, oranonymous structsas we call them, encapsulate heterogeneous ordered col-
lections values of fixed length. Members of anonymous structs can optionally be la-
belled, and labels can be duplicated, even at different types. Members of anonymous
structs can be accessed by label or by position. Anonymous structs are value types, and
have no object identity.

The functionDivMod returns the quotient and remainder of its arguments as a tuple
that contains two named integer fieldsstruct{int Div, Mod;} :

144

struct{int Div, Mod;} DivMod(int x, int y) {
return new(Div = x/y, Mod = x%y);

}

The members of an anonymous struct may be unlabelled, for example, we can create a
tuple consisting of a labelledButton and an unlabelledTextBox as follows:

struct{Button enter; TextBox;} x =
new(enter=new Button(), new TextBox());

An unlabelled member of anominaltype is a shorthand for the same member implicitly
labelled with its type.

As mentioned earlier, members of tuples can be accessed either by position, or by
label. For example:

int m = new(47,11)[0];
Button b = x.enter;

As for streams, tuples are covariant provided that the upcast-conversion that would
be applied is the identity. Subtyping is lifted over field declarations as expected. This
means that we can assignnew(enter=new Button(), new TextBox()) to a
variable of typestruct{Control enter; Textbox;} .

2.3 Streams+anonymous structs = tables

Relational data is stored in tables, which are sets of rows. Sets can be represented by
streams, and rows by anonymous structs, thus streams and anonymous structs together
can be used to model relational data.

The table below contains some basic facts about Pokemon characters such as
their name, their strength, their kind, and the Pokemon fromwhich they evolved (see
http://www.pokemon.com/pokedex/ for more details about these interesting
creatures).

Name HP Kind Evolved

Meowth 50 Normal
Rapidash 70 Fire Ponyta

Charmelon80 Fire Charmander
Zubat 40 Plant

Poliwag 40 Water
Weepinbell 70 Plant Bellsprout

Ponyta 40 Fire

This table can be modelled by the variablePokedex below:

enum Kind {Water, Fire, Plant, Normal, Rock}

struct{string Name; int HP; Kind Kind; string? Evolved;
} * Pokedex;

The fact that basic Pokemon are not evolutions of other Pokemon shows up in that the
Evolved column has typestring? .

145

2.4 Discriminated union

A value of adiscriminated unionholds (at different times) any of the values of its
members. Like anonymous structs, the members of discriminated unions can be labelled
or unlabelled.

Discriminated unions often appear in content classes (see§2.5 below). The type
Address uses a discriminated union to allow either a memberStreet of type
string or a memberPOBoxof typeint :

class Address {
struct{

choice{ string Street; int POBox; };
string City; string? State; int Zip;
string Country;

};
}

The second situation in which discriminated unions are usedis in the result types
of generalized member access (see§3.2). For example, whenp has typePokemon, the
wildcard expressionp. * selects all members ofp which returns a stream containing
all the members of a Pokemon and has type

choice{string; int; Kind; string?} *

Using the subtype rules forchoice and streams this is equivalent to
choice{string?; int; Kind;} * .

Unlike unions in C/C++ and variant records in Pascal where users have to keep
track of which type is present, values of an discriminated unions in Xen are implicitly
tagged with the static type of the chosen alternative, much like unions in Algol68. In
other words, discriminated unions in Xen are essentially a pair of a value and its static
type. The type component can be tested with the conformity teste was T . The expres-
sion e was T is true forexactly oneT in the union. This invariant is maintained by
the type system. You can get the value component of a discriminated union value by
downcasting.

Labelled members of discriminated unions are just nested singleton anonymous
structs, for examplechoice{int Fahrenheit; int Celsius;} is a shorthand
for the more verbosechoice{struct{int Fahrenheit;}; struct{int
Celsius;};} . Discriminated unions are idempotent (duplicates are removed), as-
sociative and commutative (nesting and order are ignored).

Values of non-discriminated unions can be injected into a discriminated union. This
rule allows us to conveniently inject values into a discriminated union as in the example
below:

choice{int Fahrenheit; int Celsius;} = new(Fahrenheit=47);

Finally, streams distribute over nested discriminated unions, Again this is essential
for recursively defined streams as in the following example which returns a stream of
integers terminated bytrue :

146

choice{int; bool;} * f(int n) {
if(n==0){

yield return true;
} else {

yield return n;
yield return f(--n);

}
}

2.5 Content classes

Now that we have introduced streams, anonymous structs, anddiscriminated unions,
our type system is rich enough to model a large part of the XSD schema language; our
aim is to cover as much of the essence of XSD [31] as possible whilst avoiding most of
its complexity.

The correspondence between XSD particles such as<sequence> and<choice>
with local element declarations and the type constructorsstruct andchoice with
(labelled) fields should be intuitively clear. Likewise, the relationship of XSD parti-
cles with occurrence constraints to streams is unmistakable. ForT∗ the attribute pair
(minOccurs, maxOccurs) is (0, unbounded) , for T? it is (0, 1) , and for
T ! it is (1,1) .

The content classAddress that we defined in§2.4 corresponds to the XSD schema
Address below:

<element name="Address"><complexType>
<sequence>

<choice>
<element name="Street" type="string">
<element name="POBox" type="integer">

</choice>
<element name="City" type="string">
<element name="State" type="string" minOccurs="0"/>
<element name="Zip" type="integer"/>
<element name="Country" type="string"/>

</sequence>
</complexType></element>

A Xen content class is simply a normal C♯ class with a single unlabelled member and
zero or more methods. As a consequence, the content can only ever be accessed via
its individually named children, which allows the compilerto choose the most efficient
data layout.

The next example schema defines two top level elementsAuthor andBook where
Book elements can have zero or moreAuthor members:

<element name="Author"><complexType>
<sequence>

<element name="Name" type="string"/>

147

</sequence>
</complexType></element>

<element name="Book"><complexType>
<sequence>

<element name="Title" type="string"/>
<element ref="Author" minOccurs="0" maxOccurs="unbound ed"/>

</sequence>
</complexType></element>

In this case, the local element reference is modelled by an unlabelled field and the two
elements are mapped onto the following two type declarations:

class Author { string Name; }
class Book { struct{ string Title; Author * ; } }

All groups such as the one used in the following schema for thecomplex typeName

<element name="Name"><complexType>
<all>

<element name="First" type="string"/>
<element name="Last" type="string"/>

</all>
</complexType></element>

are mapped to ordinary fields of the containing type:

class Name { string First; string Last; }

As these examples show, both top-level element declarations and named complex
type declarations are mapped to top-level types. This allows us to unify derivation of
complex types and substitution groups of elements using standard inheritance. Further
details of the relationship between the XML and Xen data-models can be found in a
companion paper [25].

3 Xen expressions

In the previous sections we have concentrated on the Xen typesystem. In this section
we will consider new Xen expression forms to construct, transform, query and combine
Xen values.

3.1 XML constructors

Xen internalizes XML serialized objects into the language,conveniently allowing pro-
grammers to use XML fragments as object literals. For instance, we can create a new
instance of anAddress object using the following XML object literal:

148

Address a = <Address>
<Street>One Microsoft Way</Street>
<City>Redmond</City>

</Address>;

The Xen compiler contains a validating XML parser that analyzes the XML literal and
“deserializes” it at compile time into code that will construct the correctAddress
instance. This allows Xen programmers to treat XML fragments as first-class values in
their code.

XML literals can also have placeholders to describedynamiccontent (anti-quoting).
We use the XQuery convention whereby an arbitrary expression or statement block can
be embedded inside an element by escaping it with curly braces:

Author NewAuthor(string name) {
return <Author>{name.ToUpper()}</Author>;

}

Embedded expressions must return or yield values of the required type (in this case
string). Validation of XML literals with placeholders is non-trivial and is the subject
of a forthcoming paper.

Note that XML literals are treated by Xen as just object constructors, there is noth-
ing special about content classes. In fact, we can write XML literals to construct values
of any type, for example, the assignment

Button b = <Button>
<Text>Click Me</Text>

</Button>;

creates an instance of the standardButton class and sets itsText field to the string
"Click Me" .

3.2 Stream generators, iterators and lifting

To make the creation of streams as concise as possible, we allow anonymous method
bodiesas expressions. In the example below we assign the (conceptually) infinite stream
of positive integers to the variablenats :

// 0, 1, 2, ...
int * nats = { int i=0; while(true) yield return i++; };

Our stream constructors (* , ?, !) are functors, and hence we implicitlylift opera-
tions on the element type of a stream (such as member or property access and method
calls) over the stream itself. For instance, to convert eachindividual string in a stream
ss of strings to uppercase, we can simply writess.ToUpper() .

We do not restrict this lifting to member access. Xen generalizes
this with an apply-to-all block. We can write the previous example as
ss.{ return it.ToUpper(); } . The implicit argumentit refers successively
to each element of the streamSs.

149

In fact, the apply-to-all block itself can yield a stream, inwhich case the resulting
nested stream is flattened in the appropriate way. For example (wherenats is a stream
of integers):

// 1, 2,2, 3,3,3, 4,4,4,4, ...
int * rs = nats.{ for(i=0; i<it; i++) yield return it; };

If an apply-to-all block returnsvoid , no new stream is constructed and the block
is eagerly applied to all elements of the stream. For exampleto print all the elements of
a stream we can just write:

nats.{ Console.WriteLine(it); };

Apply-to-all blocks can be stateful, so we can use them to do reductions (in the func-
tional community calledfolds). For example, we can sum all integers in an integer
streamxs as follows:

int sum(int * xs){
int s = 0; xs.{ s += it; }; return s;

}

We need to be careful when lifting over non-null types, sincethe fact that the re-
ceiver object is notnull does not imply that its members are notnull either:

Button! b = <Button/>;
Control p = b.Parent; // Parent might be null

Hence the return type of lifting over a non-null type is not guaranteed to return a non-
null type.

Optional types provide a standard implementation of thenull design pattern; when
a receiver of typeT? is null , accessing any of its members returnsnull :

string? t = null;
int? n = t.Length; // n = null

In Objective-C [16] this is the standard behaviour for any object that can benull .
Member access is not only lifted over streams, but over all structural types.

For example the expressionxs.x will return the streamtrue, 1, 2 of type
choice{bool; int;}+ whenxs is defined as:

struct{ bool x; struct{int x;} * ; } xs =
new(x=true

, {yield return new(x=1); yield return new(x=2);}
);

Lifting over discriminated unions introduces a possibility of nullness
for members that are not in all of the alternatives. Supposex has type
choice{ int; string; } . Since only string has a Length member,
the type ofx.Length is int? which reflects the fact that in case the dynamic type of
x is int , the result ofx.Length will be null . Sinceint andstring both have a
memberGetType() , the return type ofx.GetType() is Type :

150

choice{ int; string; } x = 4711;
int? n = x.Length; // null
Type t = x.GetType(); // System.Int32

In case the alternatives of a union have a member of differenttype in common, the result
type is the union of the types of the respective members.

Binary and unary operators are lifted element-wise over streams. For example we
can add two optional integersx+y to get another optional integer. If eitherx or y is
null the result of adding them isnull as well. Lifting of optional types implements
SQL’s three-value logic.

Often we want tofilter a stream according to some predicate on the elements of
the stream. For example, to construct a stream with only odd numbers, we filter out
all even numbers from the streamnats of natural numbers using the filter expression
nats[it%2==1] . For each element in the stream to be filtered, the predicate is eval-
uated with that element bound toit . Only if the predicate is true the element becomes
part of the new stream.

int * odds1 = nats[it%2 == 1];

In fact, filters can be encoded using an apply-to-all block:

int * odds2 = nats.{if(it%2 == 1) yield return it;};

3.3 Further generalized member access

As we have seen, Xen elegantly generalizes familiar C♯ member access resulting in
compact and clear code. However we should like to provide more flexible forms of
member access: Xen provideswildcard, transitiveandtype-basedaccess. These forms
are similar to the concepts of nametest, abbreviated relative location paths and name
filters in XPath [1], but have been adapted to work uniformly on object graphs.

Wildcards provide access to all members of a type without needing to specify the
labels. For example, suppose that we want to have all fields ofanAddress :

choice{string; int;} * addressfields = Microsoft. * ;

The wildcard expression returns the content of all accessible fields and prop-
erties of the variableMicrosoft in their declaration order. In this case
"One Microsoft Way" , "Redmond" , 98052 , "USA" .

Transitive member access, written ase...m , returns all accessible membersm

that are transitively reachable frome in depth-first order. The following declaration of
authors (lazily) returns a stream containing allAuthor s of all Books in the source
streambooks :

Book F = <Book>
<Title>Faust</Title>
<Author>Goethe</Author>

</Book>;
Book K = <Book>

151

<Title>De Klompeniers</Title>
<Author>Jac. Broersen</Author>

</Book>;

Book* books = { yield F; yield K; };
string * authors = books...Author;

Transitive member access abstracts from the concrete representation of a tree; as long
as the mentioned member is reachable and accessible, its value is returned.

Looking for just a field name might not be sufficient, especially for transitive queries
where there might be several reachable members with the samename, but of different
type. In that case we allow an additional type-test to restrict the matching members.
A type-test onT selects only those members whose static type is a subtype ofT . For
instance, if we are only interested in Microsoft’sPOBox number, andZip code, we
can write the transitive queryMicrosoft...int:: * .

3.4 Comprehensions

The previous sections presented our solutions to querying documents. However for ac-
cessing relational data, which we model as streams of anonymous structs, simple SQL
queries are more natural and flexible. Here we only consider the integration of the SQL
select-from-where clause, and defer the discussion of more advanced features
such as data manipulation and transactions to a future paper.

The fundamental operations of relational algebra areselection, projection, union,
differenceandjoin. Here are two simple SQL-style comprehension queries:

Pokemon* ps1 =
select * from Pokedex where Kind == Normal;

struct{string Name; Kind Kind;} * ps2 =
select Name, Kind from Pokedex;

In practice, the result types of SQL queries can be quite involved and hence it be-
comes painful for programmers to explicitly specify types.Since the compiler already
knows the types of sub-expressions, the result types of queries can be inferred automat-
ically. Providing type declarations for method local variables is not necessary, and we
can simply write:

ps2 = select Name, Kind from Pokedex;

without having to declare the type ofps2 .
Union and difference present no difficulty in our framework.They can easily be

handled with existing operations on streams. Union concatenates two streams into a
single stream. Difference takes two streams, and returns a new stream that contains all
values that appear in the first but not in the second stream.

The real power of comprehensions comes from join. Join takestwo input streams
and creates a third stream whose values are composed by combining members from the
two input streams. For example, here is an expression that selects pairs of Pokemons
that have evolved from each other:

152

select p.Name, q.Name
from p in Pokedex, q in Pokedex
where p.Evolved == q

Again, we should like to emphasize the elegant integration of data in Xen. The
select expression works on arbitrary streams, whether in memory or on the hard disk;
streams simply virtualize data access. Strong typing makesdata access secure. But there
is no excessive syntactic burden for the programmer as the result types of queries are
inferred.

4 Conclusion

The language extensions proposed in this paper support boththe SQL [2] and the XML
schema type system [31] to a large degree, but we have not dealt with all of the SQL
features such as (unique) keys, and the more esoteric XSD features such as redefine.
Similarly, we capture much of the expressive power of XPath [1], XQuery [3] and
XSLT [5], but we do not support the full set of XPath axis. We are able to deal smoothly
with namespaces, attributes, blocking, and facets however. Currently we are investigat-
ing whether and which additional features need to be added toour language.

In summary, we have shown that it is possible to have both SQL tables and XML
documents as first-class citizens in an object-oriented language. Only a bridge between
the type worlds is needed. Building the bridge is mainly an engineering task. But once
it is available, it offers the best of three worlds.

Acknowledgments

We should like to acknowledge the support, encouragement, and feedback from Mike
Barnett, Nick Benton, Don Box, Luca Cardelli, Bill Gates, Steve Lucco, Chris Lu-
cas, Todd Proebstring, Dave Reed, Clemens Szyperksi, and Rostislav Yavorskiy and
the hard work of the WebData languages team consisting of William Adams, Joyce
Chen, Kirill Gavrylyuk, David Hicks, Steve Lindeman, ChrisLovett, Frank Mantek,
Wolfgang Manousek, Neetu Rajpal, Herman Venter, and Matt Warren. This paper was
written whilst Bierman was in the University of Cambridge Computer Laboratory and
supported by EU AppSem II.

153

Bibliography

[1] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernandez, M. Kay, J. Robie, and
J. Simeon. XML path language 2.0.http://www.w3.org/TR/xpath20/ .

[2] G.M. Bierman and A. Trigoni. Towards a formal type systemfor ODMG OQL.
Technical Report 497, University of Cambridge Computer Laboratory, 2000.

[3] S. Boag, D. Chamberlin, M.F. Fernandez, D. Florescu, J. Ro-
bie, and J. Siméon. XQuery 1.0: An XML query language.
http://www.w3.org/TR/xquery/ .

[4] A.S. Christensen, A. Muller, and M.I. Schwartzbach. Static analysis for dynamic
XML. In Proceedings of PlanX, 2002.

[5] J.J. Clark. XSL Transformations 1.0.http://www.w3.org/TR/xslt .
[6] R. Connor, D. Lievens, and F. Simeoni. Projector: a partially typed language for

querying XML. InProceedings of PlanX, 2002.
[7] M. Fahndrich and R.M. Leino. Declaring and checking non-null types in an

object-oriented language. InProceedings of OOPSLA, 2003.
[8] C. Flanagan, R. Leino, M. Lillibridge, C. Nellson, J. Saxe, and R. Stata. Extended

static checking for Java. InProceedings of PLDI, 2002.
[9] V. Gapeyev and B.C. Pierce. Regular object types. InProceedings of ECOOP,

2003.
[10] P. Graunke, S. Krishnamurthi, S.V.D. Hoeven, and M. Felleisen. Programming

the web with high-level programming languages. InProceedings of ASE, 2001.
[11] R. Griswold and M. Griswold.The Icon programming language. Prentice Hall,

1990.
[12] H. Hosoya and B.C. Pierce. XDuce: A typed XML processinglanguage (prelim-

inary report). InProceedings of WebDB, number 1997 in LNCS, pages 226–244,
2000.

[13] P. Hudak. Building domain specific embedded languages.ACM computing sur-
veys, 28(4), 1996.

[14] M. Kempa and V. Linnemann. On XML objects. InProceedings of PlanX, 2002.
[15] O. Kiselyov and S. Krishnamurthi. SXSLT: A manipulation language for XML.

In Proceedings of PADL, 2003.
[16] S. Kochan.Programming in Objective C. Sams, 2003.
[17] A. Krall and J. Vitek. On extending Java. InProceedings of JMLC, 1997.
[18] T. Lahiri, S. Abiteboul, and J. Widom. Ozone: Integrating structured and semi-

structured data. InProceedings of DBPL, 2000.
[19] D. Leijen and E. Meijer. Domain specific embedded compilers. InProceedings of

USENIX Conference on Domain-specific languages, 1999.
[20] B. Liskov, R. Atkinson, T. Bloom, E. Moss, J.C.Schaffert, R. Scheiffer, and

A. Snyder.CLU reference manual. Springer Verlag, 1981.
[21] B. Liskov, M.Day, M. Herlihy, P. Johnson, and G. Leavens. ARGUS reference

manual. Technical report, MIT, 1987.
[22] E. Meijer. Server side web scripting in Haskell.Journal of Functional Program-

ming, 10(1), 2000.

154

[23] E. Meijer, D. Leijen, and J. Hook. Client-side web scripting with HaskellScript.
In Proceedings of PADL, 2002.

[24] E. Meijer, W. Schulte, and G.M. Bierman. The essence of Xen. Submitted for
publication, 2003.

[25] E. Meijer, W. Schulte, and G.M. Bierman. Programming with circles, triangles
and rectangles. InProceedings of XML 2003, 2003.

[26] E. Meijer and M. Shields. XMλ: a functional language for constructing and ma-
nipulating XML documents. Unpublished paper, 1999.

[27] E. Meijer and D. van Velzen. Haskell server pages. InProceedings of Haskell
workshop, 2000.

[28] S. Murer, S. Omohundro, D. Stoutamire, and C.Szyperski. Iteration abstraction in
Sather.ACM ToPLAS, 18(1):1–15, 1996.

[29] T.A. Proebsting. Disruptive programming language technologies. Unpublished
note, 2002.

[30] M. Shields and E. Meijer. Type-indexed rows. InProceedings of POPL, 2001.
[31] J. Simeon and P. Wadler. The essence of XML. InProceedings of POPL, 2003.
[32] P. Thiemann. WASH/CGI: Server side web scripting with sessions and typed

compositional forms. InProceedings of PADL, 2002.
[33] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and SchemeQL: Two little lan-

guages. InProceedings of Workshop on Scheme and functional programming,
2002.

155

156

Syntax sugar for FC++:
lambda, infix, monads, and more

Brian McNamara and Yannis Smaragdakis

College of Computing
Georgia Institute of Technology

http://www.cc.gatech.edu/ ∼yannis/fc++/
lorgon,yannis@cc.gatech.edu

Abstract. We discuss the FC++ library, a library for functional programming in
C++. We give an overview of the library’s features, but focuson recent additions
to the library. These additions include the design of our “lambda” sublanguage,
which we compare to other lambda libraries for C++. Our lambda sublanguage
contains special syntax for programming with monads, whichwe also discuss in
detail. Other recent additions which we discuss are “infix function syntax” and
“full functoids”.

1 Introduction

FC++[7, 8] is a library for functional programming in C++. Wehave recently added
a number of new features to the FC++ library, most notably an expression template
library for creating alambdasublanguage. The lambda sublanguage contains special
syntax for programming withmonadsin the style of Haskell. We focus our discussion
on the design of this portion of the library (Section 5 and Section 6), but begin with a
run-down of the features of FC++ (Section 2 and Section 3) as well as some important
implementation details (Section 4).

2 Overview

In FC++, programmers define and usefunctoids. Functoids are the FC++ representation
of functions; we will discuss them in more detail in Section 4. The latest version (v1.5)
of the FC++ library supports a number of useful features, including

– higher order, polymorphic functoids (“direct” functoids)
– lazy lists
– a large library of functoids, combinators, and monads (mostof which duplicate a

good portion of the Haskell Standard Prelude[2])
– currying
– infix functoid syntax
– dynamically-bound functoids (“indirect” functoids)
– a small library of effect combinators
– interfaces to C++ Standard Library data structures and algorithms via iterators

157

– ways to transform methods of classes and normal C++ functions into functoids
– reference-counted “smart” pointers for memory management(used internally by,

e.g., our lazy list data structure)

We’ll briefly discuss each of these features in the next section. Later on we will discuss

– special syntax to mimic functional language constructs, includinglambda, let, and
letrec, as well asdo-notation andcomprehensionsfor arbitrary monads

in detail.
The FC++ library is about 9000 lines of C++ code, and is written with strict con-

formance to the C++ standard[4], which makes it portable to all of the major brands of
compilers.

3 Short Examples of various features

FC++ functoids can be simultaneously higher order (able to take functoids as arguments
and return them as results) and polymorphic (template functions which work on a vari-
ety of data types). For example, consider the library functioncompose() , which takes
two functoids and returns the composition:

// compose(f, g)(args) == f(g(args))

We could define a polymorphic functoidaddSelf() , which adds an argument to it-
self:

// addSelf(x) == x + x

We could then composeaddSelf with itself, and the result would still be a polymor-
phic functoid:

int x = 3;
std::string s = "foo";
compose(addSelf, addSelf)(x) // yields 12
compose(addSelf, addSelf)(s) // yields "foofoofoofoo"

Section 4 describes the infrastructure of these “direct functoids”, which enables this feat
to be implemented.

FC++ defines a lazy list data structure calledList . List s are lazy in that they
need not compute their elements until they are demanded. Forexample, the functoid
enumFrom() takes an integer and returns the infinite list of integers starting with that
number:

enumFrom(1) // yields infinite list [1,2,3,...]

A number of functoids manipulate such lists; for instancemap() applies a functoid to
each element of a list:

map(addSelf, enumFrom(1)) // yields infinite list [2,4 6,. ..]

The FC++ library defines a wealth of useful functoids and datatypes. There are
named functoids for most C++ operators, like

158

plus(3,4) // 3+4 also minus, multiplies, etc.

There are many functoids which work onList s, including map. Most of the
List functions are identical those defined in Haskell[2]. Additionally, a num-
ber of basic functions (like the identity function,id), combinators (likeflip :
flip(f)(x,y)==f(y,x)), and data types (likeList and Maybe; Maybe will
be discussed in Section 6) are designed to mimic exactly their Haskell counterparts. We
also implement functoids for such C++ constructs as constructor calls andnew calls:

construct3<T>()(x,y,z) // yields T(x,y,z)
new2<T>()(x,y) // yields new T(x,y)

and many more (some of which are described below).
Functoids are curryable. That is, we can call a functoid withsome subset of its

arguments, returning a new functoid which expects the rest of the arguments. Currying
of leading arguments can be done implicitly, as in

minus(3) // yields a new function "f(x)=3-x"

Any argument can be curried explicitly using the placeholder variable_ (defined by
FC++):

minus(3,_) // yields a new function "f(x)=3-x"
minus(_,3) // yields a new function "f(x)=x-3"

We can even curry allN of a function’s arguments with a call tocurryN() , returning
a thunk(a zero-argument functoid):

curry2(minus, 3, 2) // yields a new thunk "f()=3-2"

FC++ functoids can be called using a special infix syntax (implemented by over-
loadingoperatorˆ):

x ˆfˆ y // Same as f(x,y). Example: 3 ˆplusˆ 2

This syntax was also inspired by Haskell; some function names (like plus) are more
readable as infix than as prefix.

FC++ definesindirect functoids, which are function variables which can be bound
to any function with the same (monomorphic) signature. Indirect functoids are imple-
mented via theFunNclasses, which takeN template arguments describing the argument
types, as well as a template argument describing the result type. For example:

// Note: plus is polymorphic, the next line selects just
// "int" version
Fun2<int,int,int> f = plus;
f(3,2); // yields 5
f = minus;
f(3,2); // yields 1

Indirect functoids are particularly useful in the implementation of callback libraries and
some design patterns[11].

The FC++ library defines a number of effect combinators. An effect combinator
combines an effect (represented as a thunk) with another functoid. Here are some ex-
ample effect combinators:

159

// before(thunk,f)(args) == { thunk(); return f(args); }
// after(g,thunk)(args) == { R r = g(args); thunk(); return r ; }

An example: suppose you’ve defined a functoidwriteLog() which takes a string and
writes it to a log file. Then

before(curry1(writeLog, "About to call foo()"), foo)

results in a new functoid with the same behavior asfoo() , only it writes a message to
the log file before callingfoo() .

FC++ interfaces with normal C++ code and the STL. TheList class implements
the iterator interface, so that lists can work with STL algorithms and other STL data
structures can be converted intoList s. The functoidptr_to_fun() transforms
normal C++ function pointers into functoids, and turns method pointers into functions
which take a pointer to the receiver object as an extra first object. Here are some exam-
ples, which use currying to demonstrate that the result ofptr_to_fun is a functoid:

ptr_to_fun(&someFunc)(x)(y) // someFunc(x,y)
ptr_to_fun(&Foo::meth)(aFooPtr)(x) // aFooPtr->meth(x)

FC++ comes with its own reference-counted smart pointers:Ref and IRef .
Ref<T> works just like aT* , only with reference counting.IRef<T> implements
intrusive reference counting; an efficient form of reference counting which requires
supportive help from the type being used (here,T). Internally, the library usesIRef s
in the implementation ofList s and indirect functoids.

4 Where is the magic?

In the previous section we saw how functoids can be used. Nevertheless, we have not
shown you how the polymorphic functoids inside FC++ are implemented or how to
define your own polymorphic functoids. In this section we show how functoids are
defined, and how they gain the special functionality FC++ supports (like currying and
infix syntax).

4.1 Defining polymorphic functoids

To create your own polymorphic functoid, you need to create aclass with two main
elements: a templateoperator() and a member structure template namedSig . To
make things concrete, consider the definition ofmap(or rather, the classMap, of which
map is a unique instance) shown in Figure 1. This definition uses the helper template
FunType , which is a specialized template for different numbers of arguments. For two
arguments,FunType is essentially:

template <class A1, class A2, class R> struct FunType {
typedef R ResultType; typedef A1 Arg1Type; typedef A2 Arg2T ype; };

We can now analyze the implementation ofMap. The operator() will allow
instances of this class to be used with regular function callsyntax. What is special
in this case is that the operator is a template, which means that it can be used with

160

struct Map {
template <class F, class L>
struct Sig : public FunType<F,L,List<typename F::templat e

Sig<typename L::ElementType>::ResultType> > {};

template <class F, class T>
typename Sig<F, List<T> >::ResultType
operator()(const F& f, const List<T>& l) const {

if(null(l))
return NIL;

else
return cons(f(head(l)), curry2(Map(), f, tail(l)));

}
} map;

Fig. 1.Definingmap in FC++

arguments of multiple types. When an instance ofMap is used with argumentsf andl ,
unification will be attempted between the types off and l , and the declared types of
the parameters (const F& , andconst List<T>&). The unification will yield the
values of the type parametersF andT of the template. This will determine the return
type of the functoid.

Now, let’s examine theSig member class of theMapclass. By FC++ convention,
the Sig member should be a template over the argument types of the function you
want to express (in this case the function typeF and the list typeL). TheSig member
template is used to answer the question “what type will your function return if I pass it
these argument types?” The answer in theMapcode is:

List< F::Sig<L::ElementType>::ResultType >

(we have elided thetypename andtemplate keywords for readability). This means:
“map returns aList of whatF would return if passed an element like the ones in list
L”.

In Haskell, one would express the type signature ofmapas:

map :: (a -> b) -> [a] -> [b]

TheSig members of FC++ functoids essentially encode the same information, but in
a computational form:Sig s are type-computing compile-time functions that are called
by the C++ unification mechanism for function templates and implement the FC++
type system. This type system is completely independent from the native C++ type
system—map’s type as far as C++ is concerned is justclass Map . Other FC++
functoids, however, can read the FC++ type information fromthe Sig member of
Map and use it in their own type computations. Themap functoid itself uses that in-
formation from whatever functoid happens to be passed as itsfirst argument (see the
F::Sig<L::ElementType>::ResultType expression, above).

161

4.2 Using theFullN wrappers to gain functionality

The definition ofmap in the previous subsection creates what we call a “basic direct
functoid” in FC++. However, a number of features of functoids (such as currying and
infix syntax, which we saw in Section 3, and lambda-awareness, which will shall de-
scribe in Section 5) only work on so-called “full functoids”.

Transforming a normal functoid into a full functoid is easy.For example, to define
mapas a full functoid, we change the definition from Figure 1 from

struct Map { / * ... * / } map;

to

struct XMap { / * ... * / };
typedef Full2<XMap> Map;
Map map;

That is,FullN<F> is the type of the full functoid created out of the basicN-argument
functoid F. The FullN template classes serve as a wrapper around basic functoids.
They add all of the FC++ features we are accustomed to (such ascurrying and infix
syntax) to the basic functoid.

Full functoids are a new feature of the FC++ library. Legacy code can promote its
basic functoids into full functoids either by making the minor modification to the defin-
ition described above, or within an expression by calling the functoidmakeFullN() ,
which takes anN-argument basic functoid as an argument and returns the corresponding
full functoid as a result.

5 Lambda

Lambda is no stranger to C++. There are a number of existing C++ libraries which
enable clients to create new, anonymous functions on-the-fly. Some such libraries, like
the C++ STL[12] and its “binders”, or previous versions of FC++, allow the creation of
new functoids on-the-fly only either by binding some subset of a functions arguments
to values (currying) or by using combinators (likecompose). Other libraries, like the
Boost Lambda Library[5] and FACT![13] enable the creation of arbitrary lambdas by
using expression templates.

5.1 Motivation

We were motivated to implement lambda by our interest in programming with monads.
Experience with previous versions of FC++ made it clear thatarbitrary lambdas are
a practical necessity if one wants to program with monads. Older versions of FC++
had a number of useful combinators which made it possible to express most arbitrary
functions, but lambda makes it practical by making it readable. For example, while
implementing a monad, in the middle of an expression you might discover that you
need a function with this meaning:

lambda(x) { f(g(x),h(x)) }

162

It is possible to implement this function using combinators(without lambda), but the
resulting code is practically unreadable:

duplicate(compose(flip(compose)(h),compose(f,g)))

Alternatively, you can define the new functoid at the top level, give it a name, and then
call it:

struct XFoo {
template <class X> struct Sig : public FunType<X,

typename RT<F<typename RT<G,X>::ResultType,
typename RT<H,X>::ResultType>::ResultType> {};

template <class X>
typename Sig<X>::ResultType operator()(const X& x) const {

return f(g(x),h(x));
}

};
typedef Full1<XFoo> Foo;
Foo foo;
// later use "foo"

but clearly this is way too much work, especially when the function in question is a
one-time-use (“throwaway”) function. Lambda is the only reasonable solution when
you need to define short, readable, arbitrary functions on-the-fly.

5.2 Problematic issues with expression-template lambda libraries

Despite the advantages to lambda, we have always maintaineda degree of wariness
when it comes to C++ lambda libraries (or any expression template library), owing to
the intrinsic limitations and caveats of using expression templates in C++. The worri-
some issues with expression template libraries in general (or lambda libraries in partic-
ular) fall into four major categories:

– Accidental/early evaluation. The biggest problem with expression template
lambda libraries comes from accidental evaluation of C++ expressions. Consider
a short example using the Boost Lambda Library:

int a[] = { 5, 3, 8, 4 };
for_each(a, a+4, cout << _1 << "\n");

The third argument tofor_each() creates an anonymous function to print each
element of the array (one element per line). The output is what we would expect:

5
3
8
4

If we want to add some leading text to each line of output, it istempting to change
the code like this:

int a[] = { 5, 3, 8, 4 };
for_each(a, a+4, cout << "Value: " << _1 << "\n");

163

But (surprise!), the new program prints the added text only once (rather than once
per line):

Value: 5
3
8
4

This is because “cout << "Value: " ” is a normal C++ expression that the
C++ compiler evaluates immediately. Only expressions involving placeholder vari-
ables (like_1)1 get “delayed” from evaluation by the expression templates.These
accidents are easy to make, and hard to see at a glance.

– Capture semantics (lambda-specific).Since C++ is an effect-ful language, it
matters whether free variables captured by lambda are captured by-value or by-
reference. The library must choose one way or the other, or provide a mechanism
by which users can choose explicitly.

– Compiler error messages.C++ compilers are notoriously verbose when it comes
to reporting errors in template libraries. Things are even worse with expression tem-
plate libraries, both because there tend to be more levels ofdepth of template in-
stantiations, and because the expression templates typically expose clients to some
new/unfamiliar syntax, which makes it more likely for clients to make accidental
errors. Indecipherable error messages may make an otherwise useful library be too
annoying for clients to use.

– Performance.Expression template libraries sometimes take orders of magnitude
longer to compile than comparably-sized C++ programs without expression tem-
plates. Also, the generated binary executables are often much larger for programs
with expression templates.

For the most part, these problems are intrinsic to all expression template libraries in
C++. As a result, when we set out to design a lambda library forFC++, we kept in mind
these issues, and tried to design so as to minimize their impact.

5.3 Designing for the issues

Here are the design decisions we have made to try to minimize the issues described in
the previous subsection.

– Accidental/early evaluation.Since the problem itself is intrinsic to the domain,
the only way to “attack” this issue is prevention. That is, wecannot prevent users
from making mistakes, but we can try to design our lambda to make these mistakes
less common and/or more immediately apparent. To this end, we have designed the
lambda syntax to be minimalist and visually distinct:

1 Additionally, one can use other special constructs defined by BLL. In the example above, we
could get the desired behavior by calling the BLL functionconstant() on the literal string,
to delay evaluation.

164

• Minimalism. Rather than overload a large number of operators and includea
large number of primitives, we have chosen a minimalist approach. Thus we
have only overloaded four operators for lambda language (array brackets for
postfix function application, modulus for infix function application, comma for
function argument lists, and equality for “let” assignments). Similarly, apart
from lambda , the only primitives we provide are those forlet , letrec ,
and if-then-else expressions. These provide a minimal coreof expressive power
for lambda, without overburdening the user with a wide interface. A narrow
interface seems more likely to be remembered and thus less error-prone.
• Visual distinctiveness.Rather than trying to make lambda expressions “blend

in” with normal C++ code, we have done the opposite. We have chosen oper-
ators which look big and boxy to make lambda expressions “stand out” from
normal C++ code. By convention, we name lambda variables with capital let-
ters. By making lambda expressions visually distinct from normal C++ code,
we hope to remind the user which code is “lambda” and which code is “normal
C++”, so that the user won’t accidentally mix the two in ways which create
accidents of early evaluation.

– Capture semantics (lambda-specific).The FC++ library passes arguments by
const& throughout the library. Effectively this is just another (perhaps efficient)
way of saying “by value”. As a result, FC++ lambdas capture free variables by
value. As with the rest of the FC++ library, the user can explicitly choose refer-
ence semantics by capturingpointersto objects, rather than the capturing objects
themselves.

– Compiler error messages.Meta-programming can be used to detect some user
errors and diagnose them “within the library” by injectingcustom error mes-
sages[9, 10] into the compiler output. Though many kinds of errorscannot be
caught early by the library (lambdas and functoids can oftenbe passed around in
potentially legal contexts, but then finally used deep within some template in the
wrong context), there are a number of common types of errors that can be nipped
in the bud. The FC++ lambda library catches a number of these types of errors and
generates custom error messages for them.

– Performance.There seems to be little that we (as library authors) can do here. As
expression template libraries continue to become more popular, we can only hope
that compilers will become more adept at compiling them quickly. In the meantime,
clients of expression template libraries must put up with longer compile times and
larger executables.

Thus, given the intrinsic problems/limitations of expression template libraries, we have
designed our library to try to minimize those issues whenever possible.

5.4 Lambda in FC++

We now describe what it looks like to do lambda in FC++. Figure2 shows some exam-
ples of lambda. There are a few points which deserve further attention.

Inside lambda, one uses square brackets instead of round ones for postfix functional
call. (This works thanks to the lambda-awareness of full functoids, mentioned in Sec-
tion 4.) Similarly, the percent sign is used instead of the carat for infix function call.

165

// declaring lambda variables
LambdaVar<1> X;
LambdaVar<2> Y;
LambdaVar<3> F;

// basic examples
lambda(X,Y)[minus[Y,X]] // flip(minus)
lambda(X)[minus[X,3]] // minus(_,3)

// infix syntax
lambda(X,Y)[negate[3 %multiplies% X] %plus% Y]

// let
lambda(X)[let[Y == X %plus% 3,

F == minus[2]
].in[F[Y]]]

// if-then-else
lambda(X)[if0[X %less% 10, X, 10]] // also if1, if2

// letrec
lambda(X)[letrec[F==lambda(Y)[if1[Y %equal% 0,

1,
Y %multiplies% F[Y%minus%1]]

].in[F[X]]] // factorial

Fig. 2.Lambda in FC++

These symbols make lambda code visually distinct so that theappearance of normal-
looking (and thus potentially erroneous) code inside a lambda will stand out. Since
operator[] takes only one argument in C++, we overload the comma operator to
simulate multiple arguments. Occassionally this can causean early evaluation problem,
as seen in the code here:

// assume f takes 3 integer arguments
lambda(X)[f[1,2,X]] // oops! comma expression "1,2,X"

// means "2,X"
lambda(X)[f[1][2][X]] // ok; use currying to avoid the issu e

Unfortunately, C++ sees the expression “1,2 ” and evaluates it eagerly as a comma
expression on integers.2 Fortunately, there is a simple solution: since all full functoids
are curryable, we can use currying to avoid comma. The issueswith comma suggest
another problem, though: how do we call a zero-argument function inside lambda? We
found no pretty solution, and ended up inventing this syntax:

// assume g takes no arguments and returns an int
// lambda(X)[X %plus% g[]] // illegal: g[] doesn’t parse
lambda(X)[X %plus% g[_ * _]] // _ * _ means "no argument here"

It’s better to have an ugly solution than none at all.

2 Some C++ compilers, like g++, will provide a useful warning diagnostic (“left-hand-side of
comma expression has no effect”), alerting the user to the problem.

166

The if-then-else construct deserves discussion, as we provide three versions:if0 ,
if1 , andif2 . if0 is the typical version, and can be used in most instances. It checks
to make sure that its second and third arguments (the “then” branch and the “else”
branch) will have the same type when evaluated (and issues a helpful custom error
message if they won’t). The other two ifs are used for difficult type-inferencing issues
that come fromletrec . In the factorial example at the end of Figure 2, for example,
the “else” branch is too difficult for FC++ to predict the typeof, owing to the recursive
call to F. This results inif0 generating an error. Thus we haveif1 andif2 to deal
with situations like these:if1 works like if0 , but just assumes the expression’s type
will be the same as the type of the “then” part, whereasif2 assumes the type is that of
the “else” part. In the factorial example,if1 is used, and thus the “then” branch (the
int value1) is used to predict that the type of the wholeif1 expression will beint .

Having three different ifs makes the lambda interface a little more complicated, but
the alternatives seemed to be either (1) to dispose of customerror messages diagnosing
if-then-elses whose branches had different types, or (2) towrite meta-programs to solve
the recursive type equations created byletrec to figure out its type within the library.
Option (1) is unattractive because the compiler-generatederrors from non-parallel if-
then-elses are hideous, and option (2) would greatly complicate the metaprogramming
in the library and slow down compile-times even more. Thus wethink our design choice
is justified. Of course, in the vast majority of cases,if0 is sufficient and this whole
issue is moot; only code which usesletrec may needif1 or if2 .

5.5 Naming the C++ types of lambda expressions

Expression templates often yield objects with complex typenames, and FC++ lambdas
are no different. For example, the C++ type of

// assume: LambdaVar<1> X; LambdaVar<2> Y;
lambda(X,Y)[(3 %multiplies% X) %plus% Y]

is

fcpp::Full2<fcpp::fcpp_lambda::Lambda2<fcpp::fcpp_l ambda::exp::
Call<fcpp::fcpp_lambda::exp::Call<fcpp::fcpp_lambda ::exp::Value<
fcpp::Full2<fcpp::impl::XPlus> >,fcpp::fcpp_lambda:: exp::CONS<
fcpp::fcpp_lambda::exp::Call<fcpp::fcpp_lambda::exp ::Call<fcpp::
fcpp_lambda::exp::Value<fcpp::Full2<fcpp::impl::XMu ltiplies> >,
fcpp::fcpp_lambda::exp::CONS<fcpp::fcpp_lambda::exp ::Value<int>,
fcpp::fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::ex p::CONS<fcpp
::fcpp_lambda::exp::LambdaVar<1>,fcpp::fcpp_lambda: :exp::NIL> >,
fcpp::fcpp_lambda::exp::NIL> >,fcpp::fcpp_lambda::ex p::CONS<fcpp
::fcpp_lambda::exp::LambdaVar<2>,fcpp::fcpp_lambda: :exp::NIL> >,1,2> >

In the vast majority of cases, the user never needs to name thetype of a lambda,
since usually the lambda is just being passed off to another template function. Occa-
sionally, however, you want to store a lambda in a temporary variable or return it from
a function, and in these cases, you’ll need to name its type. For those cases, we have de-
signed theLEType type computer, which provides a way to name the type of a lambda
expression (LE). In the example above, the type of

167

lambda(X,Y)[(3 %multiplies% X) %plus% Y]
// desugared: lambda(X,Y)[plus[multiplies[3][X]][Y]]

is

LEType< LAM< LV<1>, LV<2>,
CALL<CALL<Plus,CALL<CALL<Multiplies,int>,LV<1> > >,LV <2> > > >::Type

The general idea is that

LEType< Translated_LambdaExp >::Type

names the type ofLambdaExp. Each of our primitive constructs in lambda has a cor-
responding translated version understood byLEType :

CALL [] (function call)
LV LambdaVar
IF0,IF1,IF2 if0[],if1[],if2[]
LAM lambda()[]
LET let[].in[]
LETREC letrec[].in[]
BIND LambdaVar == value

With LEType , the task of naming the type of a lambda expression is still onerous,
but LEType at least makes it possible. Without theLEType type computer, the type
of lambda expressions could only be named by examining the library implementation,
which may change from version to version.LEType guarantees a consistent interface
for naming the types of lambda expressions.

Finally, it should be noted that if the lambda only needs to beused monomorphi-
cally, it is far simpler (though potentially less efficient)to just use an indirect functoid:

// Can name the monomorphic "(int,int)->int" functoid type easily:
Fun2<int,int,int> f = lambda(X,Y)[(3 %multiplies% X) %plu s% Y];

5.6 Comparison to other lambda libraries

Here we briefly compare our approach to implementing lambda to that of the other
major lambda libraries for C++: the Boost Lambda Library (BLL)[5] and FACT![13].3

Boost Lambda Library Whereas FC++ takes the minimalist approach, BLL takes the
maximal approach. Practically every overloadable operator is supported within lambda
expressions, and the library has special lambda-expression constructs which mimic the
control constructs of C++ (like while loops, switches, exception handling, etc). The
library also supports making references to variables, and side-effecting operators like
increment and assignment. Lambda is implicit rather than explicit; a reference to a
placeholder variables (like_1) turns an expression into a lambda on-the-fly.

3 The FACT! library, like FC++, includes features other than lambda, e.g. functions likemap()
andfoldl() as well as data structures for lazy evaluation. BLL, on the other hand, is con-
cerned only with lambda.

168

BLL’s approach makes sense given the “target audience”; theBoost libraries are
designed for everyday C++ programmers. These are people whoare familiar with C++
constructs, and who are hopefully C++-savvy enough to avoidmost of the pitfalls of an
expression-template lambda library. In contrast, FC++ is designed to support functional
programming in the style of languages like Haskell. A numberof our users come from
other-language backgrounds, and aren’t too familiar with the intricacies of C++. Thus
FC++’s lambda is designed to present a simple interface withsyntax and constructs
familiar to functional programmers, and to shield users from C++-complexities as much
as possible.

FACT! FACT!, like FC++, is designed to support pure functional programming con-
structs. Lambda expressions always perform capture “by value” and the resulting func-
tions are typically effect-free. Like FC++, FACT! has an explicit lambda construct; the
user can define his own names for placeholder variables, but conventionally names like
x andy are used. FACT! defines few primitive control constructs in its lambda sublan-
guage (justwhere for if-then-else). Like BLL, however, FACT! overloads manyC++
operators (like+) for use in lambda expressions. Thus FACT!’s interface is relatively
simple and minimal, but lambda expressions are not as visually distinctive as they are
in FC++.

6 Monads

Monads provide a useful way to structure programs in a pure functional language. Using
monads, it is relatively straightforward to implement things like global state, exceptions,
I/O, and other concepts common to impure languages that are otherwise difficult to
implement in pure functional languages[6, 14].

Supporting monads in FC++ is an interesting task for a numberof reasons:

– Many interesting functional programs and libraries use monads; monad support in
FC++ makes it easier to port these libraries to C++.

– Monads in Haskell take advantage of some of that language’s most expressively
powerful syntax and constructs, includingtype classes, do-notation, andcompre-
hensions. Modelling these in C++ helps us better understand the relationship be-
tween the expressive power of these languages.

– Monads provide a way to factor out some cross-cutting concerns, so that local pro-
gram changes can have global effects. (We discuss a few example applications that
illustrate this.)

In the next subsection, we give a short introduction to monadic programming in
Haskell. Next we discuss the relationship betweentype classesin Haskell andconcepts
in C++; understanding this relationship facilitates the discussion in the rest of this sec-
tion. Then we discuss how we have implemented monads in FC++.We end with some
example applications of monads.

169

6.1 Introduction to monads in Haskell

We briefly introduce a small portion of the Haskell programming language,4 as its type
system provides perhaps the most succinct and transparent way to understand the details
of what a monad is. For the moment, know that a monad is a particular kind of data
type, which supports two operations (namedunit andbind) with certain signatures
that obey certain properties. We shall return to the detailsafter a short digression with
Haskell.

In Haskell, the declarationo :: T says that objecto has typeT. Basic type names
(like Int) start with capital letters. Lowercase letters are used forfree type variables
(parametric polymorphism – e.g. templates). The symbol[T] represents a list ofT
objects. The symbol-> separates function arguments and results. The symbol-- starts
a comment. Here are a few examples.

x :: Int -- x is an integer

add1 :: Int -> Int -- add1 is a function from Int to Int

-- plus takes two Ints and returns an Int
-- (Or, equivalently, plus takes one Int, and returns a funct ion
-- which takes an Int and returns an Int. Currying is built in.)
plus :: Int -> Int -> Int

-- id takes any type of object and returns
-- an object of the same type
id :: a -> a

-- map is a polymorphic function of two arguments;
-- it takes a function from type a to type b, and a
-- list of objects of type a, and returns a list of b objects
map :: (a -> b) -> [a] -> [b]

Free type variables can be bounded by “type classes” (described shortly). For example,
a function to sort a list requires that the type of elements inthe list are comparable with
the less-than operator. In Haskell we would say:

sort :: (Ord a) => [a] -> [a]

That is,sort is a function which takes a list ofa objects and returns a list ofa objects,
subject to the constraint that the typea is a member of theOrd type class. Type class
Ord in Haskell represents those types which support ordering operators like

class Ord a where
== :: a -> a -> Bool
< :: a -> a -> Bool
<= :: a -> a -> Bool

-- etc.

4 Haskell programmers will note that we are fudging some of thedetails of Haskell to simplify
the discussion.

170

We say that a typeT is aninstanceof type classCwhen the type supports the methods
in the type class. For example, it is true that

instance Ord Int -- Int is an instance of Ord

Given this overview of Haskell’s types and type classes, we can now describe mon-
ads. A monad is a type class with two operations:

class Monad m where
bind :: m a -> (a -> m b) -> m b
unit :: a -> m a

In this case, instances of monads are not types, but rather they are “type constructors”.
These are like template classes in C++; an example is a list. In C++std::list is not
a type, butstd::list<int> is. The same holds for Haskell;[] is not a type, but
[Int] is. In the code describing the monad type class above,mis a type constructor.

It turns out thatlists are instances of monads:

instance Monad [] where
bind m k = concat (map k m) -- don’t worry about these
unit x = [x] -- definitions yet

-- in the list monad
-- bind :: [a] -> (a -> [b]) -> [b]
-- unit :: a -> [a]

As another example, consider theMaybe type constructor. The type “Maybe a” rep-
resents a value which is either just ana object, or else nothing. In Haskell:

data Maybe a = Nothing | Just a

-- Examples of variables
x :: Maybe Int
x = Just 3

y :: Maybe Int
y = Nothing

Maybe also forms a monad with this definition:

instance Monad Maybe where
bind (Just x) k = k x -- don’t worry about
bind Nothing k = Nothing -- these definitions
unit x = Just x -- yet

-- in the Maybe monad
-- bind :: Maybe a -> (a -> Maybe b) -> Maybe b
-- unit :: a -> Maybe a

A refinement of theMonad type class isMonadWithZero :

class (Monad m) => MonadWithZero m where
zero :: m a

171

The zero element of a monad is a value which is in the monad regardless of what
type was passed to the monad type constructor. For lists, theempty list ([]) is the
zero . ForMaybe, thezero is Nothing . Not all monads have zeroes, which is why
MonadWithZero is a separate type class.

Monads with zeroes can be used incomprehensionswith guards. Comprehensions
are a special notation for expressing computations in a monad. Haskell supports com-
prehensions for the list monad; an example is

[x+y | x <- [1,2,3], y <- [2,3], x<y]
-- results in [3,4,5]

This list comprehension could be interpreted as “the list ofvalues x plus y, for all x and
y where x is selected from the list [1,2,3] and y is selected from the list [2,3], and where
x is less than y”. The desugared version of the Haskell code is:

-- (\z -> z+1) is Haskell lambda syntax:
-- (lambda(Z)[Z %plus% 1])
-- backquotes are Haskell’s infix syntax:
-- (x ‘f‘ y == f x y)
[1,2,3] ‘bind‘ (\x ->

[2,3] ‘bind‘ (\y ->
if not (x<y) then zero

else unit (x+y)))

The translation from the comprehension notation to the desugared code is straight-
forward. Starting from the vertical bar and going to the right, the expressions of the
form “var <- exp ” turn into calls tobind and lambdas, and guards (boolean con-
ditions) are transformed into if-then-else expressions which return the monadzero if
the condition fails to hold. After all expressions to the right of the vertical bar have been
processed, the expression to the left of the vertical bar getsunit called on it to lift the
final computed value back into the monad.

6.2 Haskell’s type classes and C++ template concepts

In the C++ literature, we sometimes speak of templateconcepts. A concept in C++ is
a set of constraints which a type is required to meet in order to be used to instantiate a
template. For example, in the implementation of the template functionstd::find() ,
there will undoubtedly be some code along the lines of

if(cur_element == target) // ...

which compares two elements for equality using the equalityoperator. Thus, in or-
der to callstd::find() to find a value in a container, the element type must be
EqualityComparable —that is, it must support the equality operator with the right
semantics. We callEqualityComparable a concept, and we say that types (such
asint) which meet the constraintsmodelthe concept. Concepts exist only implicitly
in the C++ code (e.g. owing to the call tooperator==() in the implementation),
and often exist explicitly in documentation of the library.Some C++ libraries[9, 10]
are devoted to “concept checking”, these libraries check tosee that the types used to

172

instantiate a template do indeed model the required concepts (and issue a useful error
message if not).

Haskell type classes are analogous to C++ concepts. Howeverin Haskell they are
reified; there are language constructs to define type classesand to declare which types
are instances of those type classes. In C++, when a certain type models a certain con-
cept (by meeting all of the appropriate constaints), it is merely happenstance (structural
conformance); in Haskell, however, in addition to meeting the constraints of a type
class interface, a type must be declared to be an instance of the concept (named confor-
mance). “Concept checking” in Haskell is built into the language: type classes define
concepts, instance declarations say which types model which concepts, and type bounds
make explicit the constraints on any particular polymorphic function.

Understanding this analogy will make the FC++ implementation of monads more
transparent. As we shall see, in the FC++ library, we spell out the concept requirements
on monads, in order to make it easier for clients who write monads to ensure that they
have provided all of the necessary functionality in the templates.

6.3 Comparing monads in FC++ to those in Haskell

struct AUniqueTypeForNothing ;
AUniqueTypeForNothing NOTHING;

template <class T>
class Maybe

List<T> rep;
public:

typedef T ElementType;

Maybe(AUniqueTypeForNothing)
Maybe() // Nothing constructor
Maybe(const T& x) : rep(cons(x,NIL)) // Just constructor

bool is_nothing() const return null(rep);
T value() const return head(rep);

;

struct XJust
template <class T>

struct Sig : public FunType<T,Maybe<T> > ;

template <class T>
typename Sig<T>::ResultType
operator()(const T& x) const

return Maybe<T>(x);

;
typedef Full1<XJust> Just;
Just just;

Fig. 3.TheMaybe datatype in FC++

173

Let us now illustrate monad definitions in FC++. As a first example, we shall look
atMaybe. TheMaybe template class and its associated entities are defined in Figure 3.
NOTHINGis the constant which represents an “empty”Maybe, andjust() is a func-
toid which turns a value of typeT into a “full” Maybe<T>. (Maybe is implemented
using aList which holds either one or zero elements.)

/ *
concept Monad

// full functoid with Sig unit :: a -> m a
typedef Unit;
static Unit unit;
// full functoid with Sig bind :: m a -> (a -> m b) -> m b
typedef Bind;
static Bind bind;

concept MonadWithZero models Monad
// zero :: m a
typedef Zero; // a value type
static Zero zero;

* /

Fig. 4. Documentation of the monad concept requirements in FC++

Next we consider how to makeMaybe a monad. Figure 4 describes the general
monad concepts as specified in the FC++ documentation. A monad class must define
the methodsunit andbind (with the appropriate signatures); a class representing
a monad with a zero must meet the above requirements as well asdefining azero
element.

Figure 5 shows how we define theMaybe monad in FC++. Nested instruct
MaybeMwe defineunit , bind , andzero , as well astypedef s for their types.
This FC++ definition effectively corresponds to the definitions

instance Monad Maybe -- ...
instance MonadWithZero Maybe -- ...

in Haskell.
It should be noted here that the one major difference betweenmonads in FC++

and monads in Haskell is that, in FC++, there is a distinctionbetween the monad type
constructor (e.g.Maybe) and the monad itself (e.g.MaybeM). We chose to make this
distinction for reasons discussed next.

One advantage to separating the type constructor (Maybe) from the monad defin-
ition (MaybeM) is that, since the monad definition is itself a data type, it can be used
as a type parameter to template functions. As a result, rather than supporting just list
comprehensions (like Haskell does), in FC++ we supportcomprehensions in an arbi-
trary monad, by passing the monad as a template parameter to the comprehension. For
example, the Haskell list comprehension

[x+y | x <- [1,2,3], y <- [2,3], x<y]

174

struct MaybeM
typedef Just Unit;
static Unit unit;

struct XBind
template <class M, class K> struct Sig : public FunType<M,K,

typename RT<K,typename M::ElementType>::ResultType> ;
template <class M, class K>
typename Sig<M,K>::ResultType
operator()(const M& m, const K& k) const

if(m.is_nothing())
return NOTHING;

else
return k(m.value());

;
typedef Full2<XBind> Bind;
static Bind bind;

typedef AUniqueTypeForNothing Zero;
static Zero zero;

;

Fig. 5. Definition of theMaybe monad (MaybeM)

is written in FC++ as

compM<ListM>()[X %plus% Y |
X <= list_with(1,2,3), Y <= list_with(2,3), guard[X %less% Y]]

Note howListM is passed as an explicit template parameter to thecompMfunction,
which returns a comprehension for that monad. As a result, wecan write

compM<MaybeM>()[X %plus% Y | X <= just(2), Y<=just(3)]

and perform a comprehension in theMaybe monad. Having a name apart from the data
type constructor to serve as a handle for the monad definition(e.g.ListM , MaybeM)
gives us a convenient way to parameterize monad operations.(The idea of generalizing
comprehensions to arbitrary monads was originally discussed by Wadler[15].)

There is another advantage to separating the type constructor from the monad def-
inition. Haskell type classes require algebraic data type constructors (not type aliases)
to work. As a result, we cannot express the identity monad (a monad wherem a = a)
directly in Haskell. Instead we have to fake it by defining a new data type (which we
have chosen to callIdentity):

data Identity a = Ident a

instance Monad Identity where -- m a = Identity a
unit x = x
bind m k = k m

where values of typea are wrapped/unwrapped with the value constructorIdent to
make them members of the typeIdentity a . In FC++, however, we can define the

175

monad without also having to define a new data type to represent identities, as seen in
Figure 6. The reason for the distinction is perhaps obvious.Haskell uses type inference,
which means it must unambiguously be able to figure out which monad a particular
data type is in. This type inference is not possible unless there is a one-to-one mapping
between algebraic datatype constructors and monads. In FC++, on the other hand, the
user passes the monad explicitly as a template parameter to constructs likecompM. By
requiring the user to be a little more explicit about the types, we gain a bit of expressive
freedom (e.g. being able to do comprehensions in arbitrary monads).

// Nothing corresponding to Identity data type needed by Has kell
struct IdentityM // M a = a

typedef Id Unit;
static Unit unit;

struct XBind
template <class M, class K> struct Sig : public

FunType<M,K, typename RT<K,M>::ResultType> ;
template <class M, class K>
typename Sig<M,K>::ResultType
operator()(const M& m, const K& k) const

return k(m);

;
typedef Full2<XBind> Bind;
static Bind bind;

;

Fig. 6. Definition of theIdentityM monad

6.4 Monads in FC++

The previous subsection introduced FC++ monads. Here we flesh out exactly what
monad support FC++ provides.

FC++ provides functoids for the main monad operations. Specifically:

unitM<SomeMonad>() // SomeMonad’s "unit" functoid
bindM<SomeMonad>() // SomeMonad’s "bind" functoid
zeroM<SomeMonad>() // SomeMonad’s "zero" value
plusM<SomeMonad>() // SomeMonad’s "plus" functoid
bindM_<SomeMonad>() // SomeMonad’s "bind_" functoid
mapM<SomeMonad>() // SomeMonad’s "map" functoid
joinM<SomeMonad>() // SomeMonad’s "join" functoid
liftM<SomeMonad>() // lifts a one-arg function into SomeMo nad
liftM2<SomeMonad>() // lifts a two-arg function into SomeM onad
liftM3<SomeMonad>() // lifts a three-arg function into Som eMonad
bind // "bind" (monad is inferred)
bind_ // "bind_" (monad is inferred)

Many of these have not been previously mentioned;plusM is another function sup-
ported by some monads;bindM_ , mapM, joinM , and theliftM functions are com-

176

mon monad operations which are defined in terms ofunitM andbindM ; bind and
bind_ are described more below.

FC++ supports comprehensions in arbitrary monads, using the general syntax:

compM<SomeMonad>()[lambdaExp | thing, thing, ... thing]

wherething is one of

– a gets expression of the form “LV <= lambdaExp ” (Translates into a call to
bind)

– a lambda expression (Translates into a call tobind_)
– a guard expression of the form “guard[boolLambdaExp] ” (Translates into an

if-then-else withzero if the test fails)

This is similar to the syntax used by Haskell’s list comprehensions. FC++ also supports
a construct similar to Haskell’sdo-notation:

doM[thing, thing, ... thing]

where eachthing is as before, onlyguard s are no longer allowed. (The lack of a
monad parameter todoM is discussed shortly.)

Clients can define monads by creating monad classes which model the monad con-
cepts described in the previous subsection (Monad and MonadWithZero). There
is also aMonadWithPlus concept for monads which supportplus . Additionally
there is another concept calledInferrableMonad , which may be modelled when
there is a one-to-one correspondence between a datatype anda monad. In the case of
InferrableMonad s, FC++ (like Haskell) can automatically infer the monad based
on the datatype in some cases; constructs likedoMand the functoidsbind andbind_
do not need to have a monad passed an an explicit parameter—they infer it automati-
cally.

The monad syntax is part of FC++’s lambda sublanguage. As with lambda , we
strived for minimalism when implementing monads. The only new operator overloads
areoperator| andoperator<= , and the only new syntax primitives arecompM,
guard , anddoM. As with the rest oflambda , we provideLEType translations so
that clients can name the result type of lambda expressions which use monads:

DOM doM[]
GETS LambdaVar <= value
GUARD guard[]
COMP compM<SomeMonad>()[]

As with the other portions oflambda , FC++ provides some custom error messages
for common abuses of the monad constructs. We followed the same design principles
discussed in Section 5 when implementing monads in FC++.

6.5 Monad examples

There are many example applications which use monads; here we discuss a small sam-
ple to give a feel for what monads are useful for.

177

Using MaybeM for exceptions One classic example of the utility of monads comes
from the domain of exception handling. Suppose we have written some code which
computes some values using some functions:

x = f(3);
y = g(x);
z = h(x,y);
return z;

(For the sake of argument, let’s say that the functionsf , g, andh take positive integers
as arguments and return positive integers as results.) Now suppose that each of the
functions above may fail for some reason. In a language with exceptions, we could
throw exceptions in the case of failure. However in a language without an exception
mechanism (like C or Haskell), we would typically be forced to represent failure using
some sentinel value (-1 , say), and then change the client code to

x = f(3);
if(x == -1) {

return -1;
} else {

y = g(x);
if(y == -1) {

return -1;
} else {

z = h(x,y);
return z;

}
}

This is painful because the “exception handling” part of thecode clutters up the main
line code. However, we can solve the problem much more simplyby using the Maybe
monad. Let the functions return values of typeMaybe<int> , and letNOTHINGrep-
resent failure. Now the client code can be written as just

compM<MaybeM>()[Z | X <= f[3],
Y <= g[X],
Z <= h[X,Y]]

The definitions ofunit andbind in the MaybeMmonad make the problem trivial;
NOTHINGvalues immediately propogate up through the end of the comprehension,
whereas integers continue on through the computation as desired.

Using ListM for non-determinism Now imagine changing the problem above
slightly; instead of the functionsf , g, and h having the possibility of failure, sup-
pose instead that they are non-deterministic. That is, suppose each function returns not
a single integer, but rather a list of all possible integer results. Changing the original
client code to deal with this change would likely be even uglier than the original change
(which required all the tests for-1). However the change to the monadic version is
trivial:

compM<ListM>()[Z | X <= f[3], -- Note ListM instead of MaybeM
Y <= g[X],
Z <= h[X,Y]]

178

The result is a list of all the possible integer values forZ which satistfy the formulae.

A monadic evaluator Wadler [15] demonstrates the utility of monads in the context
of writing an expression evaluator. Wadler gives an exampleof an interpreter for a
tiny expression language, and shows how adding various kinds of functionality, such
as error handling, counting the number of reduction operations performed, keeping an
execution trace, etc. takes a bit of work. The evaluator is then rewritten using monads,
and the various additions are revisited. In the monadic version, the changes necessary
to effect each of the additions are much smaller and more local than the changes to the
original (non-monadic) program. This example demonstrates the value of using monads
to structure programs in order to localize the changes necessary to make a wide variety
of additions throughout a program.

Monadic parser combinators Parsing is a domain which is especially well-suited to
monads. In the Haskell community, “monadic parser combinators” are becoming the
standard way to structure parsing libraries. As it turns out, parsers can be expressed as
a monad: a typical representation type for parser monads is

Parser a = String -> Maybe (a, String) -- the monad "Parser"

That is, a parser is a function which takes aString and returns

– (if the parse succeeds) a pair containing the result of the parse and the remaining
(yet unparsed)String , or

– (if the parse fails)Nothing .

Monadic parsercombinatorsare functions which combine parsers to yield new parsers,
typically in ways commonly found in the domain of parsing andgrammars. For exam-
ple, the parser combinatormany:

many :: Parser a -> Parser [a]

implements Kleene star—for example, given a parser which parses a single digit called
“digit ”, the parser “many digit ” parses any number of digits. Monadic parser
combinator libraries typically provide a number of basic parsers (e.g.charP , which
parses any character and returns that character) and combinators (e.g.plusP , which
takes two parsers and returns a new parser which tries to parse a string with the first
parser, but if that fails, uses the second) to clients. The beauty of the monadic parser
combinator approach is that it is easy for clients to define their own parsers and com-
binators for their specific needs. A good introductory paperon the topic of monadic
parser combinators in Haskell is [3]; we implement the examples in that paper in one
of the example files that comes with the FC++ library.

As we have seen in the previous examples, using monads often makes it easy to
change some fundamental aspect of the behavior of the program. For example, if we
have an ambiguous grammar (one for which some strings admit multiple parses), we
can simply change the representation type for the parser like so:

Parser a = String -> [(a, String)]
-- uses List instead of Maybe

179

and redefine the monad operations (unit , bind , zero , andplus), and then parsers
will return a list of every possible parse of the string. Thisis all possible without making
any changes to existing client code.

One alternative approach to writing parsing libraries in C++ is that taken by the
Boost Spirit Library[1]. Spirit uses expression templatesto turn C++ into ayacc -like
tool, where parsers can be expressed using syntax similar tothe language grammar. For
example, given the expression language

factor ::= integer | group // BNF
term ::= factor (mulOp factor) *
expression ::= term (addOp term) *
group ::= ’(’ expression ’)’

one can write a parser using Spirit as

factor = integer | group; // Spirit (C++)
term = factor >> * (mulOp >> factor);
expression = term >> * (addOp >> term);
group = ’(’ >> expression >> ’)’;

which is almost just as readable as the grammar. Likeyacc , Spirit has a way to asso-
ciate semantic actions with each rule.

The results are similar with monadic parser combinators. Using an FC++ monadic
parser combinator library, we can write

factor = lambda(S)[(integer %plusP% dereference[&group])[S]];
term = factor ˆchainl1ˆ mulOp;
expression = term ˆchainl1ˆ addOp;
group = bracket(charP(’(’), expression, charP(’)’));

to express the same parser. The above FC++ code creates parser functoids by using
more primitive parsers and combining them with appropriateparser combinators like
chainl1 . (Note that, whereas Spirit’s parser rules are effectively“by reference”,
FC++ functoids are “by value”, which means we need to explicitly create indirection to
break the recursion among these functoids. Hence the use oflambda , dereference ,
and the address-of operator.) This FC++ parser not only parses the string, but it also
evaluates the arithmetic expression parsed. The semanticsare built into the user-defined
combinators likeaddOp andchainl1 . For example,

addOp :: Parser (Int -> Int -> Int)

parses a symbol like’-’ and returns the corresponding functoid (minus). Then,

chainl1 :: Parser a -> Parser (a -> a -> a) -> Parser a
-- e.g. p ‘chainl1‘ op

parses repeated applications of parserp , separated by applications of parserop (whose
result is a left-assocative function, which is used to combine the results from thep
parsers). Thus monadic parser combinator libraries allow one to express parsers at a
level of abstraction comparable to tools likeyacc or the Spirit library, but in a way in
which users can define their own abstractions (likechainl1) for parsing and seman-
tics, rather than just using the builtin ones (like Kleene star) supplied by the tool/library.

180

Lazy evaluation Previous versions of FC++ supported lazy evaluation in two main
ways: first, via the lazyList class and the functions (likemap) that useList s, and
second, via “thunks” (zero argument functoids, likeFun0<T>). Monads provide a new,
more general mechanism to lazify computations. The datatype ByNeed<T> and its
associated monadByNeedMcan be used to make a computation lazy. Additionally, the
functoidbLift lazifies a functoid by lifting its result into the ByNeedM monad. For
example, we can lazify

x = f(3);
y = g(x);
z = h(x,y);

by writing

compM<ByNeedM>()[Z | X <= bLift[f] [3],
Y <= bLift[g] [X],
Z <= bLift[h] [X,Y]]

The result is aByNeed<int> value, which is a computation that will result in anint
when “forced” by callingbForce . (Conversely, a constant can be turned into a by-need
computation by callingbDelay .) Using values of typeByNeed<T> in lieu of typeT
ensures that lazy evaluation occurs: a computation is not performed until the value is
demanded, and once a computation has been run to produce a value, the value is cached
so that further applications ofbForce get the cached value rather than re-running the
computation.

In short, the datatypeByNeed<T> combines “thunks” with caching, and the
ByNeedMmonad makes syntax sugar like comprehensions available so that client code
working with ByNeed<T> objects need not be concerned with all the “forcing” and
“delaying” in the midst of the computation (the monad plumbing handles this).

Summary The examples given in this section give a sense of the kinds ofapplications
for which monads are useful. Monads have a wide variety of utilities, which span varied
domains (such as parsing and lists) and a number of cross-cutting concerns (like lazy
evaluation and exception handling). Prior versions of FC++implemented a few small
monads, but they were extremely burdensome to express. The expressiveness afforded
by the new FC++ syntactic sugar (like lambda and comprehensions) makes using mon-
ads in C++ a practicality for the first time.

7 Conclusions

We have given an overview of FC++ and described its new features in detail. Full func-
toids provide a general and reusable mechanism for adding features such as curryability,
infix syntax, and lambda-awareness to every functoid. The lambda sublanguage is de-
signed to minimize the problems common to all expression-template lambda libraries
in C++. We have discussed the relationship between Haskell type classes and C++ tem-
plate concepts in order to help describe how monads can be expressed in FC++. We
have demonstrated a novel syntax for comprehensions which generalizes this construct

181

to an arbitrary monad. Throughout FC++ and the lambda sublanguage, we have over-
loaded a select few operators to provide syntactic sugar forthe library and we have used
named functoids likeplus to express the actual operations of C++ operators.

182

Bibliography

[1] de Guzman, Joel, et al. The Boost Spirit Library. Available at
http://www.boost.org/libs/spirit/index.html

[2] Haskell 98 Language Report. Available online at
http://www.haskell.org/onlinereport/

[3] Hutton Graham and Meijer Erik. “Monadic parsing in Haskell” Journal of Func-
tional Programming, 8(4):437-444, Cambridge University Press, July 1998.

[4] ISO/IEC 14882: Programming Languages – C++. ANSI, 1998.
[5] Järvi, Jaakko and Powell, Gary. The Boost Lambda Library. Available at

http://boost.org/libs/lambda/doc/index.html
[6] Jones, Simon Peyton and Wadler, Philip. “Imperative functional programming,”

20th Symposium on Principles of Programming Languages, ACM Press, Char-
lotte, North Carolina, January 1993.

[7] McNamara, Brian and Smaragdakis, Yannis. “FC++: Functional Programming in
C++”, Proc. International Conference on Functional Programming(ICFP), Mon-
treal, Canada, September 2000.

[8] McNamara, Brian and Smaragdakis, Yannis. “Functional Programming with the
FC++ library”Journal of Functional Programming, to appear.

[9] McNamara, Brian and Smaragdakis, Yannis. “Static Interfaces in C++”Workshop
on C++ Template ProgrammingOctober 2000, Erfurt, Germany. Available at
http://www.oonumerics.org/tmpw00/

[10] Siek, Jeremy and Lumsdaine, Andrew. “Concept Checking: Binding Parametric
Polymorphism in C++”Workshop on C++ Template ProgrammingOctober 2000,
Erfurt, Germany. Available athttp://www.oonumerics.org/tmpw00/

[11] Y. Smaragdakis and B. McNamara, “FC++: Functional Tools for Object-Oriented
Tasks”Software Practice and Experience, August 2002.

[12] A. Stepanov and M. Lee, “The Standard Template Library”, 1995. Incorporated in
ANSI/ISO Committee C++ Standard.

[13] Striegnitz, Jörg. “FACT! The Functional Side of C++,”Available at
http://www.fz-juelich.de/zam/FACT

[14] Wadler, Philip. “Comprehending monads,”Mathematical Structures in Computer
Science, Special issue of selected papers from 6th Conference on Lisp and Func-
tional Programming, 2:461-493, 1992.

[15] Wadler, Philip. “Monads for functional programming.”J. Jeuring and E. Meijer,
editors,Advanced Functional Programming, Springer Verlag, LNCS 925, 1995.

183

184

Importing alternative paradigms into modern
object-oriented languages.

Andrey V. Stolyarov

Moscow State Lomonosov University,
dept. of Computational Math. and Cybernetics,
MGU, II uch. korp., komn.747, Leninskie Gory,

Moscow, 119899, Russia

Abstract. The paper is devoted to the problem of importing alternativepara-
digms into an imperative object-orented environment. Several known solutions
of the problem are discussed with explanation of their drawbacks. Then a new
solution is introduced.
The solution is based on the fact that programming paradigmsdeveloped within
alternative languages such as Lisp, Prolog, Refal etc. are in fact independent from
their respective languages (e.g., from their syntax). Eachof these languages im-
plements a certain algebra, which in fact creates the paradigms. It is possible to
represent such an algebra with object-oriented technique and get the respective
set of paradigms within the primary language. Together withsyntactic capabil-
ities of the primary language (such as overloading of standard arythmetic op-
eration symbols) this results in possibility for a programmer to use alternative
paradigms (such as Lisp programming) right within the primary language (C++
or Ada95). No changes to the primary language is needed, nor is it required to
apply any additional preprocessing to the code; only the standard translator of the
primary language is used. The only thing needed to use the explained approach
is an appropriate library.
As an illustration, the paper describes a C++ class library named InteLib which
currently has a practically usable implementation for Lispprogramming, and ex-
perimental umplementations of Refal and a subset of Prolog.

1 Introduction

Different programming languages encourage a programmer touse different ways to
imagine the program being developed, the environment (hardware, operating system,
user etc) and their interaction. The simplest way is to imagine a computer either as
such (processor, memory, i/o ports etc) or a some kind of virtual machine capable to
perform certain set of operations, and a program as a sequence of instructions those
explicitly specify what operations are to be performed. This way of thinking is known
as ”imperative programming”.

Another technique, proposed in early 1960s [10], is to represent the program as a
set of functions. Each function gets zero or more arguments and computes a result. A
function may use other functions in computations, including using itself, directly or
indirectly (so called recursive function calls). No side effects are allowed, that is, if all

185

the arguments are known, one can replace a function call withit’s result and get the
same program. This is known as ”pure functional programming” [7].

Several years later, ”logic programming” [12] was proposed. In logic programming,
the program is thought as a set of logic facts (axioms) used totest statements and find
objects that satisfy the given conditions. Pure logic programming also disallows side
effects.

Obviously, both pure functional and pure logic programmingare not suitable for
interactive programs because interactive program changesits environment at least read-
ing from the input and writing to the output so it’s required to have functions with side
effects to create an interactive program. In contrast with these two styles, the technique
of object-oriented programming appeared in the middle 1970s looks like being cre-
ated specially for interactive software development. The program and its environment
are represented with so-called ”objects” – abstract ”blackboxes” capable to exchange
messages and perform various actions in response to a message [2].

The notion of aprogramming paradigmis often used to refer to a particular system
of programming abstractions. It is important to notice thatthe notion of a program-
ming paradigm is significantly unformal. There is no well-established classification of
programming paradigms though there were many attempts to give one (e.g., [13]). For
example, the languages Lisp[15], Refal[17], Miranda[18] and Hope[7] are all usually
taken as functional languages. However, they in fact have less in common than in differ-
ences. E.g., a Refal function is based on text matching against patterns and transform-
ing in accordance to the rule for the pattern first matched. There’s no such capability
in Lisp. This makes it more convenient to perform lexical andsyntactic analyses with
Refal than with Lisp. Hope and Miranda are pure functional languages while Lisp has
global variables and local lexical bindings changeable as aside effect of a function, etc.

Nowadays the union of imperative and object-oriented paradigms is the most popu-
lar in the software industry. The union is implemented by such languages as C++ [16],
Ada95, Java, Delphi, Object Pascal etc.

Using different languages together within a single projectleads to different serious
problems so it is rare practice; most projects are single-language, and the langage is one
of these imperative object-oriented languages listed above. In most cases it is inconve-
nient to implement a whole project in Lisp, Refal or Prolog. This in fact results in that
these languages are rarely used at all despite that they are extremely suitable for some
subtasks in almost any project.

2 Example of a project suitable for multiparadigm technique

As noted in [6], ”We may encounter application domains whichcan be modeled best
with only one paradigm. But there may be other domains which can be represented
more adequately using multiple paradigms”. Furthermore, in almost any large software
project there are subtasks for which alternative paradigmsare suitable.

Consider we have a database with complicated relationship within its components,
and a user who needs a good interface to the database, preferably close to a natural
language. First of all, we have to analyse the queries user types at his console (lexical

186

analysis). Then we need to determine what do they mean (syntax analysis). Finally, we
need to create and perform a query to the database and return its results to the user.

It takes significant time to write a lexical analyser in an imperative language such
as C++. If we do it in Refal, however, the work’s complexity reduces by tens of times.

Next, we need to do some more processing to prepare the query.We should deter-
mine what formulae do mean and probably perform some transformations, optimiza-
tions etc. It is hard to operate with symbolic formulae in C++, but in Lisp all the sym-
bolic transformations are programmed simply.

Now we are ready to request and retrieve a result from the database. It’s not a prob-
lem when the query is simple; for instance, if we’ve got a database storing personal
data of some people, a request like ”Give me a home phone number of Bob Johnson”
after lexical analysis and syntax transformations is not a problem to perform. However,
the user might ask for a thing much harder to calculate. For example: ”Find me a fe-
male who has graduated in 1997 in the Moscow State Universityas a computer science
person, then got married in 1998 with a male who speaks fluent English and is older
than his wife by 3 years”. It is possible to create a database that stores all the necessary
data, but a request like this might force us to write a whole program to complete it.
Please note that we know the conditions and the only problem is to find the solution
which satisfies them all. Logic languages such as Prolog, Datalog etc. are suitable for
this purpose [5].

It looks like a good idea to make data flow such as shown at fig. 1

User - Refal - Lisp - Prolog - Database

6

Fig. 1. Simple idea of data flow between parts implemented in different languages

However, the diagram at fig. 1 does not represent all the functionality of the hypotet-
ical system. First, it must interact with a user, possibly via a network. Second, it should
control the database, which is probably to be used by many users simultaneously. That
leads to many technological problems (e.g., locking) to be solved by the system. In ad-
dition, we should not forget that the data is stored on physical (that is,real) disks, so we
need to monitor the file system, check whether there’s sufficient amount of free space,
do some caching to increase performance etc.

Languages such as Refal, Prolog and Lisp are not good to do allthese things. Their
features are far from the real equipment capabilities. Theyare not so efficient as C++
and other ”universal” imperative languages. For an artificial intelligence tasks such as
the one described below, it is possible to trade efficiency ofthe software for develop-
ment speed increase, but in a system task envolved to maintain the data storage it is
inacceptable to loose in efficiency.

187

Besides that, interaction with a user in modern systems requires graphical interface
(GUI), which is usually created as an event-driven system. It is inconvenient to create an
event-driven system with an artificial intelligence language. Object-oriented languages
such as SmallTalk[8], C++ or Java are much more suitable for this purpose.

The diagram at fig. 2 is closer to practice. We assume that ”User Interface” and
”Database Management System” are created with languages suitable for these purposes,
probably C and C++. So we have C++ as a primary language and Lisp, Prolog and Refal
as secondary languages.

User
-� User Interface(C + +)

?

Refal - Lisp - Prolog

�

?6

Data
-� Database management system (C)

Fig. 2. Data flow closer to reality

However, when someone tries to use such an idea in a real project, she finds out it
is much harder to implement such a system than to create a diagram. If we try to use an
alternative language for a particular (small) subtask in a large project, we get into a trou-
ble with integration of language tools that have so totally different nature (for instance,
strictly typed imperative language as the primary languageand a typeless functional
language as the secondary language). There are problems in calling conventions, in
sharing global data, in using heaps etc.

Furthermore, even the fact of using two or more different programming systems
within one project makes the project harder to manage. If oneof the programmers does
not know one of the used programming systems, she could get into a trouble trying to
build the project, to fix someone else’s code etc. The difficulty of managing a project
which uses two or more programming systems is so serious thatthis reason alone is
able to prevent senior developers from making decisions of using different languages.

3 Different ways towards multiparadigm environment creation

It is obvious that an ability of using different paradigms together is attractive. There are
certain difficulties though that prevent programmers from trying multiparadigm pro-
gramming.

188

Before we introduce the new idea which hopefully allows to avoid most of the trou-
bles, let us discuss some possible (and well-known) ways of creation of a multiparadigm
environment.

We’ll try to understand why each of them didn’t become as widely-used as it is
necessary to satisfy the need in multiparadigm programming. This will allow us to
specify what do we actually want from the new technique.

3.1 Creation of another programming language

There were many attempts to create a new programming language for the purpose of
multiparadigm programming (e.g., Leda[3], Oz[11] etc.). There is an unexpected trou-
ble however. It is expensive to develop a new language. It is yet more expensive to bring
the newly-developed language to the level of an industrial product so that it can be used
in real software engineering practice, because this requires to support the language with
useful software tools (compilers, debuggers etc.), as wellas to create sufficient amount
of documentation, tutorials and write and publish lots of books. But the real trouble is
then to wait and see that the software engineering communitydoesn’t tend to use the
language in spite of all its advantages.

It is somewhat magic1 when the community turns towards a new language, and this
is a very rare kind of event, probably because the community is too conservative2. In fact
it has to be. Really, starting to use a new technology requires to reeducate the personnel
and change habitual methods of working. Both are very expensive, while outcome of
changing languages is not so clear, specially to managers who make decisions.

This is why we decide not to try to create another language, even by extending an
existing one. Enough of them are created already but that doesn’t help.

3.2 A package of differently implemented programs

There are as well a few approaches to solve the problems of different programming
languages integration within a single project. The simplest idea is just to write sev-
eral programs, each in its own language, and make them interoperate using operating
system’s capabilities.

This kind of solution avoids problems with calling and data conventions, linking in-
compatibilities etc. It doesn’t help tough with problems ofusing different programming
systems within a single project.

Besides that, interoperation organization produces its own problems depending on
a particular technology.

Using Unix style3, when every program of the package has standard streams of in-
put and output and the interoperation is done with command languages, we have to

1 E.g., community preferred to use C++ with all its drawbacks while a similar but better-looking
and carefully developed language Ada is in fact forgotten

2 There’s nothing bad though in this conservatism. Everything happens too fast in Computer
Science so if the industry wasn’t so conservative, we’d havenothing actually done.

3 Unix style is mentioned as a multiparadigm environment in, e.g., [14]

189

convert all the data somehow into a text representation, andthen analyse the represen-
tation in another program of the package. Another drawback is that it is not always
convenient to use the standard input/output streams for interoperation with another part
of the package.

There are some attempts to make another, more convenient fora programmer stan-
dard way to organize interoperation of different programs,such as CORBA and COM.
However, such technologies theyselves are complicated enough so that making a pro-
gram to support them could be comparable in difficulty with solving the task the pro-
gram is actually written for, and they are best handled with object-orientred languages,
producing troubles with functional or logic languages.

3.3 Embedded interpreters

Another solution is to build an interpreter of a secondary language into the primary
language. In the simplest case the interpreter is implemented as a module, which has
an appropriate interface. The main program (e.g., written in C++) feeds the interpreter
with the text of a module created in the secondary language (e.g., Lisp), then passes the
initial data, runs the interpreter and reads the results back.

One of more advanced techniques is known as ’embeddance’ of one language into
another. In this case the primary language is enlarged with some certain constructs
which allow to insert constructs of a secondary language into a code in the primary
language. In this case we need a preprocessor which handles embeddance constructs
and produces a plain code in the primary language which is then compiled in a regular
way. In fact such a preprocessor replaces a foreign construct with some code which
converts all necessary variables into a text, creates an appropriate query and then passes
it to an interpreter, and then converts the received result as necessary. This technique
is successfully applied to the case of writing database operation software using SQL-
based database management system.

Such a solution, though, has many disadvantages:

– The solution does not allow us to call primary language functions from within the
interpreted code. Only primary language functions can callthe secondary language
code, but not vice versa.

– The secondary language code is fully interpreted. That is, when the program runs,
every call to the interpreted language is given in its text representation. The em-
bedded interpreter has to perform lexical and syntactic analyses ”on-the-fly” which
may lead to efficiency losses.

– ”The last but not least” – the results of the interpreted codecalling are also pre-
sented in text form, so we need to analyse it in the main program. Just remember
that analysing of strings is one of the tasks we want to avoid in C++ code and per-
form with an artificial intelligence language, preferably Refal, and you’ll realize
that something is wrong.

Besides that, mixing up interpreted and compiled executionwithin one program
doesn’t look like a fair solution anyway. It is clear that we can’t avoid interpretation
completely for such languages as Lisp or Prolog, but at leastwe could expect there will
be no lexical and syntactic analyses at runtime.

190

3.4 Extendable interpreters

The opposite solution is to choose an interpreted language as the primary one and pro-
vide mechanisms to extend the interpreter with functions implemented in another lan-
guage (usually the language in which the interpreter is initially implemented). One of
the well-known examples is Tcl. Its interpreter allows to call C code which is compiled
into a shared library following certain simple calling conventions.

The main drawback of this method is that the primary languagemust be interpreted
which may be inappropriate in some cases.

3.5 Cross-language linkage

Having certain amount of patience, it is possible to compileand link modules written
in different languages together. As it was mentioned before, this produces numerous
problems with differences in calling conventions, data representation conventions etc.
Furthermore, it almost always requires to make changes to the existing programming
systems (for example, to reimplement compilers so that theycould produce compatible
object modules). As of practice, all these hardships are sufficient to prevent program-
mers from trying multiparadigm programming. And, anyway, we don’t reach real in-
tegration of languages this way because the languages theyselves are not designed for
multilanguage environment (e.g., there’s a problem how to call a C function from Lisp
code – how tospecifysuch a call using Lisp syntax).

3.6 Compilation from one language into another

The difficulties of linking together modules implemented intwo defferent languages
can be reduced if one of the languages is first compiled into the other.

Many of Scheme translators actually produce C code which canthen be compiled
in usual manner. Thus there’s no problem to link such a code with some modules im-
plemented in C and/or C++.

We still don’t know how to specify a C function call in Scheme syntax, that is, only
Scheme functions can be called from C, but not vice-versa. Also, the programmer needs
to understand the internal data structures of the particular implementation of Scheme
in order to compose a call to a Scheme function and/or analysethe results. This is
inappropriate because internal data structures are usually not well-documented.

3.7 Paradigms without a language

There’s also a chance to brainstorm why do we actually want touse another language
for a particular subtask, that is, what features does it havethe primary language doesn’t
provide, and then just implement them (e.g., as a library).

Consider we use C++ as the primary language and we for some reason we feel it
useful to have heterogenous lists4 as we do in Lisp. It is possible to implement them
with C++ template classes. First, we create a base class which implements the common

4 Each element of the list may have its own type

191

behaviour of all items of such a list (e.g., a pointer to the next item, a pure virtual func-
tion which returns the size of this object etc.) Having this class, we define a template
child of it. The template gets the type of the stored value as its parameter. Each item of
such a list would be an instance of the template. Using C++ runtime type identification
(RTTI) we can tell one type of an item from another when the list is handled.

Practice shows however this doesn’tcompletelysatisfy the programmers’ needs.
Each language grows a special environment where new techniques and methods appear,
and these methods usually base on more than one paradigm (such as heterogenous lists).
If we remember Lisp working on a C++ project, we probably won’t stop with Lisp lists
alone. Once we implemented the lists, the next thing we mightneed is Lisp mapping
functions, or Lisp destructive list changing and garbage collection, and so on.

3.8 Summary

Now let’s summarize what conditions do we want to meet with a new solution. We need
a framework for multiparadigm programming which

1. allows to use one of the languages widely accepted by the industry as it is, i.e. with
no changes to the existing compilers and other tools;

2. delivers additional paradigms as they exist in the choosen alternative language, all
(or almost all) together;

3. doesn’t place any limitations over interparadigm function calls and sharing data
between different code;

4. doesn’t require lexical and syntactic analyses of any parts of the code at runtime.

In the next chapter we introduce a technique which complies the above require-
ments. It is discussed assuming C++ is the primary language and Lisp is the language
we need to import the set of paradigms from.

4 The key idea

In order to explain the idea of a new technique, let’s discusswhat do we actually need
from the secondary language (e.g., Lisp). Do we, for example, need its syntax? Per-
haps we don’t. Generally speaking,we need the paradigms developed around the
language, not the language itself.

Lisp language implements a kind of algebra on so called S-expressions. Both pro-
gram and data are built of S-expressions. The basic operations on S-expressions are:

– composition (allows to make a list or an arbitrary binary tree of S-expressions)
– decomposition (retriving elements of a list or a tree)
– evaluation (allows to treat an S-expression as a code and perform the according

operations)
– lambda (allows to build an S-expression of a functional type, so-called closure, with

a given list of formal parameters and a list representing thefunction’s body)

192

Special type of S-expression calledsymbol(in the terminology tradition to Common
Lisp [15]) or identifier (in the Scheme’s terminology [9]) has additional operations -
assigning a value, binding a value and assigning a function.In real dialects of Lisp this
set is wider, but we’ll limit to these 3 operations.

Besides that, there are additional basic operations (that is, operations which require
one to know the internal representation of S-expressions inorder to implement such
an operation). Some of them are necessary to make the algebrauseful (e.g. arythmetic
operations on numberic S-expressions), while others are intended for the user’s conve-
nience.

The mentioned operations create an algebra on the space of S-expressions. We will
denote the introduced algebra asS-algebra.

It is clear that S-algebra being implemented in any particular way will give us the
full set of Lisp paradigms. S-algebra may be implemented without an actual Lisp inter-
preter. All we need is to keep it useful, that is, provide a convenient instrumental basis
to operate S-expressions and apply all the necessary operations.

In some languages (including C++ and Ada) it is possible to overload standard
operations such as+, - , / etc. This allows to implement an arbitrary algebra using very
natural and convenient syntax. For example, one can implement a mathematical notion
of a vector using+ for vector addition,- for vector difference operation,* for the scalar
multiplication and (for instance)̂ for vector multiplication.

In the same manner we can implement the notion of S-expression with a class (or,
more precisely, with a polymorphic hierarchy of classes) and invent a certain set of
operations so as to implement the whole S-algebra presentedin Lisp.

5 Representation of S-algebra with C++

In this section the architecture and design of a C++ class library named InteLib [1] is
explained as an illustration of the proposed idea.

5.1 S-expressions of various types

The notion of S-expression is represented with an abstract class which for historical
reasons is called LTerm. In Lisp, there are S-expressions ofdifferent types (numberic
constants, string constants, symbols, dotted pairs, functional objects/closures etc.) A
polymorphic inheritance technique is used to represent differend types of S-expressions.
The LTerm hierarchy is shown at fig. 3.

In the discussed version of the library theLTerm class’ children serve to represent
various types of S-expressions:

– LTermInteger andLTermFloat represent numberic constants;
– LTermString represents string constants;
– LTermLabel is introduced to represent S-expressions whose role in the system is

determined by the particular instance of the object (such asCommon Lisp symbols,
as well as#t and#f in Scheme);

– LTermSymbol represents Lisp symbols;

193

LTerm
- LTermInteger

- LTermFloat

- LTermString

- LClassicAtom

- LTermLabel

- LTermSymbol

- LDotPair

- LForm

- LCFunction

-

... Lisp functions written in C++

-

- LLispForm

- LLambda

- LNLambda

- LMacro

-

... Special forms
-

- LTermStream

- LHashTable

- LPackage
...

Fig. 3. LTerm classes hierarchy intended to represent S-expressions of various types

– LDotPair represents dotted pairs which Lisp lists are built of;

– LForm represents generic functional S-expression such as library function, user-
defined function or lexical closure, Lisp macro etc.

– several additional classes to represent miscellaneous features such as hash table, i/o
stream etc.

InteLib supports two types of numberic constants, namely integers and floats.
Compile-time options of the library allows to choose what numberic types we ac-
tually need. It is possible to causeLTermInteger to useshort , int , long or
long long type to store the actual value, as well asLTermFloat can be tuned to
usefloat , double or long double form of a floating point number.

194

Strings are implemented assuming a string constant itself is never changed. In con-
trast with Common Lisp, there is no vector type of S-expression in the discussed model
so a string is considered as just an atomic value.

There is no special type of S-expression for single characters. They are represented
with anLTermString object as a string which has length of 1.

Lisp symbols are implemented with classLTermSymbol . The class is capable to
hold a reference to an object which represents the current dynamic value of the symbol
and to another object which represents the function associated with the symbol. Stuff
related to lexical bindings of a symbol is implemented outside the class but is supported
with its methods (those related to setting and getting the value).

The notion of an empty list may be implemented by any object ofS-expression; the
only condition is that the address of the object is known at the compile time because the
end-of-list check is performed just by comparing pointers.Usually an object of the class
LTermSymbol (for dialects close to Common Lisp) or LTermLabel (for Scheme-like
dialects) are used for this purpose.

To represent functionals as data,LForm subhierarchy has been developed within
the LTerm hierarchy. The subhierarchy hasLCFunction andLLispForm classes
derived directly fromLForm . Lisp special forms are also represented with classes de-
scended directly fromLForm .

The LCFunction class represents functions implemented in C++, including all
”built-in” functions such asCAR, CDR, CONSetc. To add a new Lisp function to the
library, a programmer needs to declare a child ofLCFunction with only one method
(DoCall) overriden in order to implement the necessary functionality.

The LLispForm class is intended to represent forms defined with Lisp con-
structions (lambda functions, nlambda functions and macros). It has references to the
lambda-list (the list of formal parameters), the function body and the lexical context5

of the form.LLispForm class has child classes corresponding to different kinds of
forms:

– LLambda (ordinary Lisp function which evaluates all its arguments and then eval-
uates the body in its own context);

– LMacro (Lisp macro evaluated as in Common Lisp);
– LNLambda (Lisp function which does not evaluate its arguments).

5.2 Garbage collection

Some ofLTerm ’s children are large so that it is inefficient to pass them by value. How-
ever, sometimes these objects are constructed within a function which may be called for
the value as well as for its side effect so that it is no good to return the created object
by pointer (if the function is called for the side effect thenthe constructed object goes
to garbage).

In order to provide garbage collection, another class (calledLReference) is pro-
vided. It has precisely the same size as a pointer do so that itis not so bad to pass it
by value. An object ofLReference class acts just like a pointer to anLTerm object

5 The notion of lexical context is implemented with a separateclass LLexicalContext

195

Table 1.Examples of Lisp expressions representation with C++ constructs

C++ constructs Lisp equivalent
(L| 25, 36, 49) (25 36 49)
(L| "I am the walrus", 1965) ("I am the walrus" 1965)
(L| 1, 2, (L| 3, 4), 5, 6) (1 2 (3 4) 5 6)
(L| (L| 1, 2), 3, 4) ((1 2) 3 4)
(L| MEMBER, 1, ˜(L| 1, 3, 5)) (member 1 ’(1 3 5))
(L| APPEND, ˜(L| 10, 20), ˜(L| 30, 40)) (append ’(10 20) ’(30 40))
(L| 1 || 2) (1 . 2)
((L| 1, 2, 3)|| 4) (1 2 3 . 4)

having necessary operations including* and-> . LReference is intended to be the
primary interface to the library. It has a lot of constructors which allow to construct an
S-expression from a value of any base C++ data type (integers, floats, strings etc).

In most cases, the objects ofLTerm class hierarchy reside in dynamic memory
and are not operated directly (altough it is possible).LReference objects are used to
handleLTerms .

Besides other features,LReference notifies the pointed object when another
pointer to it is created or an existing pointer is no longer pointing to it (e.g., it is assigned
with another value or destructed).LTerm class performs simple reference counting and
deletes the object once it has zero references.

Reference counting is choosen for its simplicity. It has well-known problems (in-
cluding the problem of cyclic constructions). If it is inappropriate for a particular appli-
cation to use reference counting, then any of existing C++ garbage collection libraries
can be used instead. The library has a compile-time option toswitch off the reference
counting code.

5.3 Lexical bindings

There are also additional classes that represent (in traditional Lisp terminology) a notion
of lexical context. Objects of these classes are not operated by user in most cases. The
library does not, however, hide them from the user because insome cases it might be
useful to create a context manually. There’s always one active lexical context (possibly
special null context). In order to use a context it must be activated. Then it is affected
by operation of binding a value to a symbol. The context itself affects operations of
assignment and retrieving a value of a symbol.

5.4 List composition operations

In Lisp there’s an operation of constructing a list of an arbitrary length denoted by
parentheses. The operation has variable ’arity’. For example, a construct(1 2 3) has
3 arguments and builds a list of 3 items - 1, 2 and 3. Besides that, there’s a binary
operation which builds a dotted pair, such as(1 . 2) . The construct(1 2 3) has
the same effect as a superposition of 3 dotted pair constructors, like this:

196

(1 2 3) == (1 . (2 . (3 . NIL)))

We can implement an operation similar to the Lisp’s(.) and it will allow us to
build any list of S-expressions. It is though a bit inconvenient to create lists using this
operation only (imagine you couldn’t use plain lists in Lisp, only dotted pairs).

Another problem is that one might want to use just a C++ constant or expres-
sion without explicit cast of it to an S-expression, e.g. ‘3’, not a construct like
LReference(3) , so in case of an overloaded standard operation we need at least one
of operands already of LReference type, which allow a C++ compiler to understand we
mean the overloaded operation, not a standard one. This requirement also prevents us
from using C++ functions with unspecified number of arguments because there’s no
way to determine at run time what types of actual parameters do we have.

The problem is solved replacing the Lisp ‘()’ operation of anarbitrary list composi-
tion with two operations. First of them creates a list of one element, while second adds
an element to a given list. It is clear the two operations allow to create an arbitrary list,
that is, their combination has the same functionality as theLisp ‘()’ operation.

The first operation always has exactly one argument, but we can’t use a symbol of
any standard unary operation for it because we want it to be applicable to an expression
of any standard type. We also don’t want to use a plain function for this purpose because
parentheses would make our constructs less clear. The problem is solved with a class
LListConstructor , which is created to be a label for a binary operation to show the
compiler to apply an overloaded one instead of the built-in operation. Usually there’s
only one instance ofLListConstructor namedL. For example, an operatorL|3
returns anLReference object that represents Lisp construct(3) .

For appending a new item to a list we can overload any overloadable binary operator.
For a better clarity we decide to use C++ comma (,) for this purpose. Left-hand operand
of a comma is always an LReference representing a list. Commadestructively changes
the list replacing the finalNIL with a dotted pair of(X . NIL) whereX is its right-
hand operand casted to anLReference . This makes it possible to represent Lisp lists
in C++ as shown in table 1.

There’s a supplementary unary operation in most of Lisp dialects which allows to
construct a list of two elements, first of which is a symbolQUOTEwhile the second is
the operation’s operand. The operation is usually denoted by a single quote symbol (’).
InteLib overloads the operator˜ (tilde) for this purpose. See table 1 for an example6.

For composing dotted pairs and dotted lists InteLib offers an operation|| . The
left-side operand must be a list (possibly of one element). The operand appearing at the
right side of the operator is converted to LReference and then the operation replaces the
lastNIL of the given list with whatever it constructed from the right-side operand. See
table 1 for an example.

Note the parentheses in the last example. They appear because the comma operator
has lower precedence than|| .

6 The operator is oveloaded for LReference class so it is possible to apply it to a list or a Lisp
symbol, but one can’t use it with strings or numberic constants. It is unnecessary anyway to
quote them since they always evaluate to themselves

197

5.5 Operations implemented as regular methods

The most important operation on S-expressions is theevaluationof an S-expression.
Evaluation is an unary function which maps fromSx\Sux to Sx whereSx is a space
of all possible S-expressions andSux is a set of ’unevaluable’ S-expressions (such as
closures). Performing evaluation of an S-expression one can also get a side effect.

All constants evaluate to themselves with no side effects. Variables evaluate to their
values, if any. Evaluation of an unbound variable generatesan error.

Evaluation of a list interpretes the first element as an instruction what functional
object to apply to the rest of the list as a list of parameters.In most cases, the resting
elements of the list are evaluated and the appropriate function is applied to a list built of
the results. The first element of the list must be either a symbol which has an associated
functional object or a Lambda-list.

It looks like we need to implement two operations in order to support the evaluation:
the evaluation itself (as a polymorphic method of theLTerm class) and an operation
of applicationof a functional S-expression (a one that belongs toLForm subhierar-
chy) to a list of parameters. The two operations are implemented as methods called
‘Evaluate ’ and ‘Call ’, respectively. The ‘Call ’ method generates an error when
called for an object of a non-functional type. ‘Evaluate ’ generates an error when
it is impossible to evaluate the given S-expression. TheIsSelfEvaluated method
allows to determine whether the object represents a constant that always evaluates to
itself.

Besides that, there are methods ‘Car ’ and ‘Cdr ’ in LTerm class. They return the
respective cells of a dotted pair when called for anLDotPair object. For an object
that represents empty list both methods return empty list. Calling these methods for a
non-list object will cause an error.

Another important method namedTextRepresentation allows to create a
human-readable representation of any given S-expression.

It is well known that there are 3 different predicates of equality in Lisp, calledEQ,
EQLandEQUAL. EQpredicate is the simplest one, it just compares two addresses.EQL
is a bit more flexible. Two objects may be not the same while representing the same
value (e.g. two instances of an integer constant 2). In orderto make it possible to im-
plementEQLpredicate for anyLTerm object there’s a virtual methodSpecificEql
which returns false by default. Implementation ofEQLchecks for equality of addresses
first, and only if the objects are notEQ, it callsSpecificEql for one of them passing
the other as an argument, so that it doesn’t cause a misbehaviour whenSpecificEql
returns false when the compating objects are the same, that is, equal in the sence ofEQ.

Another important operation, Lambda, is implemented by a constructor of
LLambda class. For example, expression

LReference(new LLambda(NULL, (L| A),
(L| (L| PLUS, A, 1))))

creates a closure withNULL lexical context. The closure takes a numberic S-expression
and returns a number which is greater by one. In Lisp such a closure would be repre-
sented as(lambda (a) (plus a 1)) . In order to create a real closure that has

198

lexically bound variables, the appropriate lexical context must be passes as the first
argument of theLLambda constructor.

There are other methods in classes of the library which a provided mostly for user’s
convenience. They include typecasting operations, which allow to convert a constant
S-expression into a base C++ value. For example,

LReference(3)->GetInteger();

will return 3, while

LReference("Hello world")->GetString();

will return a pointer to a constant string"Hello world" . Calling such a method for
a wrong type of S-expression causes an error.

5.6 Operations performed by standard Lisp functions

Standard, or built-in, functions play a key role in Lisp functionality providing a basis
for building programs. They can also be thought as operations on S-expressions, that is,
as elements of S-algebra.

In Lisp there are symbols that initially have associated built-in functions. InteLib
doesn’t provide such symbols in order to allow a user to use whatever names she wants
for these symbols. The functional objects representing well-known Lisp functions are
direct children ofLCFunction class (for functions that evaluate all arguments) or of
LForm class (for special forms). They usually have names such asLFunctionCar ,
LFunctionCons , LFunctionLet , LFunctionDefun and so on.

For convenience there is a generic class

template<class F> class LFunctionalSymbol

whose argument must be a class that represents a particular function. An instance of
LFunctionalSymbol differs fromLSymbol in that its constructor creates an ob-
ject of the given finctional class and lets it be the associated function of the symbol. For
example, one might want to add the following declaration to the program:

LFunctionalSymbol<LFunctionCar> CAR("CAR");
LFunctionalSymbol<LFunctionCdr> CDR("CDR");
LFunctionalSymbol<LFunctionCons> CONS("CONS");
LFunctionalSymbol<LFunctionCond> COND("COND");
LFunctionalSymbol<LFunctionDefun> DEFUN("DEFUN");

etc. As usual, the constructor’s argument sets the textual name of the symbol which is
used byTextRepresentation method.

Consider, for example, the following Lisp code:

(defun isomorphic (tree1 tree2)
(cond ((atom tree1) (atom tree2))

((atom tree2) NIL)
(t (and (isomorphic (car tree1)

199

(car tree2))
(isomorphic (cdr tree1)

(cdr tree2))))))

One can write the module shown at fig. 4 to do the same thing in C++. The module

// File isomorph.cpp
#include "intelib.h"
LSymbol ISOMORPHIC("ISOMORPHIC");
void LispInit_isomorphic() {

static LSymbol TREE1("TREE1");
static LSymbol TREE2("TREE2");
static LFunctionalSymbol<LFunctionDefun> DEFUN("DEFUN ");
static LFunctionalSymbol<LFunctionCond> COND("COND");
static LFunctionalSymbol<LFunctionAtom> ATOM("ATOM");
static LFunctionalSymbol<LFunctionAnd> AND("AND");
static LFunctionalSymbol<LFunctionCar> CAR("CAR");
static LFunctionalSymbol<LFunctionCdr> CDR("CDR");
(L|DEFUN, ISOMORPHIC, (L|TREE1, TREE2),

(L|COND,
(L|(L|ATOM, TREE1), (L|ATOM, TREE2)),

(L|(L|ATOM, TREE2), NIL),
(L|T, (L|AND,

(L|ISOMORPHIC, (L|CAR, TREE1), (L|CAR, TREE2)),
(L|ISOMORPHIC, (L|CDR, TREE1), (L|CDR, TREE2)))))).Eval uate();

}
// end of file

Fig. 4. Example of a C++ module that defines a function in a manner of Lisp

compiles with an ordinary C++ compiler without any additional preprocessing. The
symbolISOMORPHICis public and can therefore be used in other modules.

Please note there are no definitions of symbolsT andNIL . They are provided by the
library as well as symbolsQUOTEandLAMBDA. The library needs symbolsT, NIL and
QUOTEbecause it is possible to obtain them from certain operations without mentioning
them in a program. Consider the following example:

(eql 1 2) -> nil
(eql 1 1) -> t
(car ’’a) -> quote

The symbolLAMBDAcan’t be obtained in such a way, but it has special meaning regard-
less of it’s possible value and/or associated function, so we have to rely on the symbol
itself (that is, for example, on the object’s address). That’s why these 4 symbols are
provided by the library in contrast with all the other well-known symbols.

It is important to understand that there’s no Lisp as such in the C++ module shown at
the fig. 4. The module is written in C++ language. The compilerknows nothing about

200

special meaning of all these commas and vertical bars; they are handled as functions
just like in any program which overloads standard operators. Thus we can say we made
no changes to the primary language, at the same time allowinga programmer to use
paradigms from another (secondary) language. Only paradigms are imported from Lisp,
not the language itself. In other words, weimport S-algebra which brings us the
paradigms of Lisp without Lisp language as such.

6 Translation from Lisp to C++

The primary goal of the InteLib library is to bring Lisp paradigms to C++. However, as
a side effect it opens a clear way to translation of Lisp code into C++. The translator is
made which uses simple rules of transformation of the code. Besides that, the translator
generates the necessary definitions of symbols and performssome other tasks as to
allow using several Lisp modules within a single project. Since the translator is not the
main goal of the project, we don’t explain it in details in this paper; we only give a short
description.

The translator takes one or more Lisp files and proudces a C++ module (that is,
a ”source” file and a header file). The translator understandsa certain set of so-called
translation directives (top level forms beginning with a token %%%), which allow to
control how names are translated etc.

The character set for C++ identifiers differs from the traditional one for Lisp sym-
bols. C++ identifiers are case-sensitive and can consist of letters, digits and the under-
line symbol. The first character of identifier must be a letteror the underline, not a digit.
Lisp symbols are case insensitive and may be built of letters, digits and various symols
such as+, - , * , _, %etc. so we need a certain translation algorythm.

The fact that Lisp symbols are case sensitive and C++ identifiers are not is very
helpful in translation of names from Lisp to C++. This allowsus to bring all letters in
a Lisp symbol to the upper case and leave the lower-case letters to represent all these
pluses, dashes and other symbols that are not allowed in C++ identifiers. For instance,
the Lisp symbolread-char might be represented asREADdashCHAR. If a symbol’s
name begins from a digit (which is illegal in C++), we prependit with a lowercase
letter, for instance - ”d”. The symbol7seas having been translated this way becomes
the identifierd7SEAS.

There are some exceptions from the general rules. For example, the Lisp symbol
null would be translated toNULL producing a name conflict with some of the stan-
dard header files. That’s why it is translated aslNULL (as specified by an appropriate
translation directive). User can add her own exceptions, rules etc.

As to experience, using of the translator is good when a wholemodule is inple-
mented in Lisp because the traditional Lisp syntax is more convenient than the intro-
duced C++ implementation of S-algebra. It is still possible, however, to avoid using the
translator.

The dialect of Lisp recognized by the translator was named InteLib Lisp. It is a very
short and simple dialect designed keeping in mind that it is to be used as a secondary
language. It ommits many features of modern Lisp dialects because they are considered
not to be essential.

201

7 Logic programming

The explained technique can be applied to secondary languages other than Lisp. One of
the obvious ways of further development is to apply it to one of the logic programming
languages.

As of now, an attempt is done to apply the technique to a very restrictive subset of
Prolog[4]. The Prolog part of the library, unlike the Lisp part, has primarily a demon-
stration value; creating a library useful in real programming practice is the subject of
further work.

The implemented subset of Prolog has no dynamic data structures (lists and func-
tors), just like in Datalog[5]. Unlike Datalog, the implemented dialect has thecut oper-
ation.

Prolog machines operate on data which is similar to S-expressions (in fact, the only
difference is functors). Creating a model of a Prolog machine, a decision was made to
reuse the classes already implemented to represent Lisp data7.

To represent the notion ofpredicate, DlAbstractPredicate class is invented.
It has a pure abstract method namedDlCreateAbstractIterator which is in-
tended to create an iterator to fetch, one by one, solutions of a given predicate provided
with the appropriate number of arguments.

To create atoms of given predicate (e.g., having predicatefather , create the atom
father(john, X)), the class providesoperator() for 0, 1, 2,..., 10 arguments
of the type LReference8.

Another class, derived from DlAbstractPredicate and named
DlPredicate , represents the predicate which is the part of Prolog program
(that is, a predicate formed of clauses of goals).

Prolog atoms (constructs such asfather(john, mary) , vertex(X) , etc.)
are represented with theDlAtom class which is in fact just a pair of a predicate
and an argument list. Atoms are usually created within functions, locally, so another
smart pointer is necessary. It is namedDlAtomRef . This smart pointer is used as
the primary interface to theDlAtom class. One of the most important operations of
DlAtomRef is operator<<=() which is used instead of the well-known Prolog
symbol:- . The operator adds another clause to the appropriate predicate and returns a
reference to the object of the classDlPredicate::DlClause . That object, in turn,
hasoperator,() to add goals (atoms) to it.

Prolog variables are represented using classDlVariable .
Using all these classes and operations, we can represent theProlog clause

grandfather(X, Y) :- father(X, Z), father(Z, Y).

with C++ expression

grandfather(X, Y) <<= father(X, Z), father(Z, Y);

7 So the dialect in fact can handle lists, but it still treats them as atomic data values, e.g., when
doing unification

8 There is no operator with variable parameters list, becauseLReference objects, being objects
of a class, can’t be passed through... in C++.

202

whereX, Y andZ are objects of the classDlVariable . Facts such as

father(john, george).

are represented using another form of the operator<<=:

father(john, george) <<= true;

Prolog code example:

father(john, george).
father(george, alex).
father(alex, alan).
father(alan, poul).
grandfather(X, Y) :- father(X, Z), father(Z, Y).

Equal C++ code:

#include "il_dlog.h"
LSymbol john("john"), george("george"),

alex("alex"), alan("alan"), poul("poul");
DlVariable X("X"), Y("Y"), Z("Z");
DlPredicate father, grandfather;
void PrologInit_father_grandfather() {

father(john, george) <<= true;
father(george, alex) <<= true;
father(alex, alan) <<= true;
father(alan, poul) <<= true;
grandfather(X, Y) <<= father(X, Z), father(Z, Y);

}

Fig. 5. Prolog-like C++ code example

Fig. 5 shows an example of a Prolog-like C++ code which uses the predicates
father andgrandfather . Now, the code

iter = grandfather(X, Y).CreateIterator();
bool rc;
do {

PDlSubstitution solution;
rc = iter->NextSolution(solution);
if (rc) {

printf("%s\n", solution->TextRepresentation().c_str());
}

} while (rc);

will print the following solutions list:

203

{X/john Y/alex}
{X/george Y/alan}
{X/alex Y/poul}

As we already noted before, the implemented model doesn’t dounification of dy-
namic data structures though Lisp lists can be operated with, considering them atomic
datums. To produce a more interesting demo, let’s add a built-in predicate named
DLCONS(car, cdr, cons) . The predicate is implemented by another class de-
rived fromDlAbstractPredicate , namedDlPredicateCons . The predicate
is able to work having any of its arguments specified or unspecified (that is, a variable
is given instead of a value).

Another useful predicate isDlPredicateLispcall (to call the Lisp machine
explained before).

The objectDlCut is a special value ofDlAtomRef which represents the cut op-
erator.

Note also that aDlPredicate without any clauses always fails, so to implement
analways failinggoal we can just create an emptyDlPredicate .

Having all these objects, we are ready to write a simple program which finds a path
in a given graph (fig. 6).

Now, if we create the appropriate iterator with

iter = Shortpath(2, 4, X, 2).CreateIterator();

the solution finding code like the one shown above will print the solution

{X/(2 1 4)}

Unlike the Lisp part of InteLib which is already useful in some practical cases,
the explained Prolog part is only a simple demo. It is plannedto implement a more
practically useful library in the close future.

8 Conclusions

The most important advantage of the proposed technique is that there’s no need for two
programming systems within a project. The existing C++ compiler is always used, and
the only thing required to use the technique is a C++ class library which has a relatively
simple imterface.

It is also possible to use another primary language. The onlyrequirement to it is the
possibility of overloading of standard operations. In particular, Ada95 may be used as
the primary language as well (at least for modelling Lisp as the secondary language).
Implementation of the appropriate library for Ada95 might be one of the further work
goals.

204

LListConstructor L;
DlPredicateCons DLCONS;
DlPredicateLispcall DLLISPCALL;
DlAbstractPredicateIterator * iter;
DlVariable X("X");
DlVariable Y("Y");
DlVariable Z("Z");
DlVariable P("P");
DlVariable N("N");
DlVariable V1("V1");
DlVariable V2("V2");
DlVariable V3("V3");
DlPredicate Edge("Edge");
DlPredicate Edge2("Edge2");
DlPredicate Member("Member");
DlPredicate Shortpath("Shortpath");
DlPredicate Fail("Fail");
Member(X, Y) <<= DLCONS(X, V2, Y);
Member(X, Y) <<= DLCONS(V1, V2, Y), Member(X, V2);
Edge(1, 2) <<= true;
Edge(1, 3) <<= true;
Edge(1, 4) <<= true;
Edge(1, 5) <<= true;
Edge(5, 3) <<= true;
Edge2(X, Y) <<= Edge(X, Y);
Edge2(X, Y) <<= Edge(Y, X);
Shortpath(X, Y, P, 1) <<=

DlCut,
Edge2(X, Y),
DLCONS(Y, L, V1),
DLCONS(X, V1, P);

Shortpath(X, Y, P, N) <<=
DLLISPCALL((L|lt, N, 1), T),
DlCut,
Fail();

Shortpath(X, Y, P, N) <<=
DLLISPCALL((L|minus, N, 1), V1),
Shortpath(Z, Y, V2, V1),
Edge2(X, Z),
DLCONS(X, V2, P);

Fig. 6. Graph path finding program

205

Bibliography

[1] E. Bolshakova and A. Stolyarov. Building functional techniques into an object-
oriented system. InKnowledge-Based Software Engineering. Proceedings of the
4th JCKBSE, volume 62 ofFrontiers in Artificial Intelligence and Applications,
pages 101–106, Brno, Czech Republic, September 2000. IOS Press, Amsterdam.

[2] G. Booch. Object-oriented Analyses and Design. Addison-Wesley, Reading,
Massachusets, second edition, 1994.

[3] T. A. Budd. Multy-Paradigm Programming in LEDA. Addison-Wesley, Reading,
Massachusets, 1995.

[4] A. Calmerauer, H. Kanoui, and M. van Caneghem. Prolog, bases théoriques et
développements actuels.Technique et Science Informatiques, 2(4):271–311,1983.

[5] S. Ceri, G. Gottlob, and L. Tanka.Logic Programming and Databases. Springer-
Verlag, Berlin, 1990.

[6] U. W. Eisenecker. Future trends in multi-paradigm programming. Position Paper
for the ECOOP’98 Panel on Multi-Paradigm Programming, 1998.

[7] A. J. Field and P. G. Harrison.Functional Programming. Addison-Wesley, Read-
ing, Massachusets, 1998.

[8] A. Goldberg and D. Robson.Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Massachusets, 1983.

[9] R. Kelsey, W. Clinger, and J. Rees. Revised5 report on Algorithmic Language
Scheme, 1998.

[10] J. McCarthy. Recursive functions of symbolic expressions and their computation
by machine.Communications of the ACM, 3:184–195, 1960.

[11] M. Müller, T. Müller, and P. Van Roy. Multiparadigm programming in Oz. In
D. Smith, O. Ridoux, and P. Van Roy, editors,Workshop on the Future of Logic
Programming. International Logic Programming Symposium, 1995.

[12] J. Robinson. Logic programming - past, present and future. New Generation
Computing, 1:107–121, 1983.

[13] D. Spinellis, S. Drossoupoulou, and S. Eisenbach. Language and architecture
paradigms as object classes: A unified approach towards multiparadigm program-
ming. In J. Gutknecht, editor,Programming Languages and System Architec-
tures International Conference, volume 782 ofLecture Notes in Computer Sci-
ence, pages 191–207, Zurich, Switzerland, March 1994. Springer-Verlag.

[14] D. D. Spinellis.Programming paradigms as object classes: a structuring mecha-
nism for multiparadigm programming. PhD thesis, University of London, London
SW7 2BZ, United Kingdom, February 1994.

[15] G. L. Steele.Common Lisp the Language. Digital Press, second edition, 1990.
[16] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,

Massachusets, third edition, 1997.
[17] V. Turchin. REFAL-5, Programming Guide and Reference Manual. New England

Publishing Co., Holyoke, 1989.
[18] D. A. Turner. Miranda – a non-strict functional language with polymorphic types.

In J. P. Jouannaud, editor,Proceedings of the Conference of Functional Program-

206

ming Languages and Computer Architecture, volume 201 ofLecture Notes in
Computer Science, pages 1–16, Nancy, France, 1985. Springer-Verlag.

207

208

Program Templates:
Expression Templates Applied to Program Evaluation

Francis Maes

EPITA Research and Development Laboratory,
14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France,

francis.maes@lrde.epita.fr ,
WWW home page:http://lrde.epita.fr/

Abstract. The C++ language provides a two-layer execution model: static ex-
ecution of meta-programs and dynamic execution of resulting programs. The
Expression Templates technique takes advantage of this dual execution model
through the construction of C++ types expressing simple arithmetic formulas.
Our intent is to extend this technique to a whole programminglanguage. The
Tiger language is a small, imperative language with types, variables, arrays,
records, flow control structures and nested functions. The first step is to show
how to express a Tiger program as a C++ type. The second step concerns op-
erational analysis which is done through the use of meta-programs. Finally an
implementation of our Tiger evaluator is proposed.
Our technique goes much deeper than the Expression Templates one. It shows
how the generative power of C++ meta-programming can be usedin order to
compile abstract syntax trees of a fully featured programming language.

1 Introduction

During the compilation process, an input program expressedin textual form is trans-
formed by successive steps into executable code. As in any language, a C++ program
will basically be evaluated during its execution. The interesting particularity of C++ is
its ability to do some computations at compile-time using template constructions (the
so-called meta-programs, see [12], [3], [7] and appendix A for an example). This two-
layer execution model corresponds to the usual concept of static (compile-time) and
dynamic (execution-time) processing.

In C++, there is a technique called Expression Templates described by [11], which
allows the exploitation of this two-layer execution model.This technique relies on
transformations of simple arithmetic expressions at compile-time to increase the per-
formances of the executable code. Moreover some evaluationcan be done entirely sta-
tically with mechanisms such as constant propagation. Thisway, some computations
usually done at execution-time are processed at compile-time.

The Expression Templates technique is based on the use of template classes. In
order to work on expressions, we need a structural description of them. This is done
by building a type that reflects the abstract syntax tree (AST) of the expression. Each
node of this tree will be translated into a template class whose arguments are the node
subtrees.

209

Usually, a program written in any language can also be expressed as an abstract syn-
tax tree. The next natural step is to wonder whether it is possible to extend the Expres-
sion Templates technique to a whole programming language. Expressing a full program
with a C++ type reflecting its AST could thus be made possible.In the remainder of
this paper, this type will be called the TAT (Tree As Type). A TAT is a representation of
an AST using a C++ type formalism.

Expressing a program in the TAT formalism would allow us to adapt the Expression
Templates evaluation method to a whole program and therefore to take advantage of
the two-layer execution model of C++ (see [5]). The entire process of compiling and
executing a program expressed as a TAT corresponds to its evaluation.

To experiment this idea, we have to choose a programming language that does not
have this two-layer execution model. We want this language to be simple and to have
few constructions. Nevertheless, this language must at least include types, functions,
records, arrays and flow control constructions. Tiger, a language defined by [1], cor-
responds to our needs: with only 40 rules in its EBNF grammar,it respects all our
conditions.

This work is a proof of concept. No-one had previously mappedan entire language
to a C++ meta-program. Those that consider C++ expression templates for prototype
implementations should be interested in this project. Moreover, the C++ metalanguage
is here introduced as an intermediate language. This point of view is different from the
current trend of supporting meta-programming by designingmetalanguages as exten-
sions of existing programming languages. Our work initially inspired by Expression
Templates goes very deeply into the possibilities of C++ meta-programs using several
techniques discovered recently.

This paper begins with an overview of related work. Next, section 3 introduces
the Tiger language, followed by a description of our architecture. Our first objective is
to translate Tiger programs into TATs. When trying to do this, several problems arise
(e.g. expressing lists). These are developed in section 4. Our second objective is to do
some static processing on this TAT. This will require a structure called environment,
and a form of static pointers detailed in section 5. Finally we want to evaluate a Tiger
program expressed as a TAT using the C++ two-layer executionmodel. The implemen-
tation which allows this is described in section 6. This is followed by some interesting
results related to this new technique. This paper will finishwith a discussion about the
possibilities of such mechanisms.

2 Related work

Our work is based on Expression Template. The Expression Template is at the basis of
our work. This technique described by [11] has many known interests. In particular it
allows to build the static AST of a C++ expression. This allows C++ meta-programs to
work on C++ expressions seen as types. This can be useful for:

– Rewriting statements into equivalent (but more efficient)ones. This was the
original intent of Expression Templates. This technique was first used to evaluate
vector and matrix expressions in a single pass, without temporaries.

210

– Building lambda terms. Several libraries for doing functionnal programming in
C++ are based on Expression Templates. Thanks to C++ meta-programs, several
functionnal operations are possible on these lambda terms.The Fact library ([9])
provides typical functional features such as currying, lambda expressions and lazy
evaluation in C++. The Boost package also includes a libraryspecialized in lambda
expressions: the Boost Lambda Library ([6]). FC++ ([8]) is asimilar library in-
spired by the Haskell language. Our work has something to do with lambda term
manipulations: we also manipulate TATs. But our intent is not to do functionnal op-
erations on a TAT but to compile a whole program including functions and variables
declarations.

– Building any other structured expressions, such as the [4] library which uses Ex-
pression Template in order to build EBNF rules. C++ meta-programs are then used
to transform a grammar into a usable parser. In this library,C++ meta-programs
deal with complex operations such as in our work.

The Expression Template is very useful but a bit complex to implement. PETE ([2])
is a tool that aims at generating the needed code. Fact is built on top of PETE. This
tool could help us to build a C++ front-end to our compiler. The idea of using template
constructions in compilers has already been used for building a java compiler, see [10].

3 Tiger evaluation and compilation

3.1 Tiger constructions

Tiger is an Algol-style language with a functional flavor. Two kinds of construction
exist: declarations and typed expressions. Declarations are of three kinds: type, variable
and function declarations. Four basic types exist: integers, strings, nil and void. New
types can be built with records and arrays. Existing types can be renamed by a typedef
mechanism. Tiger is not a first-order functionnal language:functions cannot be passed
as parameters, neither as results.

Tiger has a nestedlet -in -end construction which makes it possible to declare
nested scopes. A particular case of this is the ability to declare nested functions.

Except declarations, everything in Tiger is an expression:literals (strings and in-
tegers), unary and binary operations, left-values, function calls, array and record in-
stantiations and flow control constructions:if -then -else , while -do , for -to -do ,
break .

3.2 Architecture

We use a front-end program which parses Tiger and does the semantic analysis: type
checking, scopes and bindings. The output of this front-endis a C++ program which
declares a TAT. Our front-end is based on techniques explained by [1].

The interesting thing is the remaining work: the program evaluation. This task is
done in C++ through the static and the dynamic processing.

Our front-end associated with the C++ static processor is a compilation chain. In-
deed the input of this chain is a textual Tiger program, and its output is an executable
program.

211

3.3 Comparison with a standard compiler

A usual object oriented compiler first parses the program. Itprovides AST classes that
are dynamically instantiated in order to build the programsabstract tree. At this point
until the end of the compilation, successive transformations are applied until getting the
executable code.

In our case, we provide a set of template classes corresponding to each node of the
AST. During the compilation of a Tiger program, these templates are filled by our front-
end giving us the TAT. At this point, the C++ compiler does successive transformations
until getting the executable code.

An analogy can easily be done between our Tiger compiler and astandard compiler.
Where a standard compiler provides AST classes, we provide AST meta-classes. Where
a standard compiler builds an AST expressed as objects, we build an AST expressed as
a type (the TAT). A standard compiler provides classes for operational analysis, we
provide meta-classes to do this work.

It has been shown that a Turing machine could be constructed with template con-
structs ([12]). Any work traditionally done by a standard compiler can theoretically be
done with C++ meta-programs. The method that we present should thus be adaptable to
any other language. The only restrictions are the C++ compilation times and memory
use.

4 Translation into TAT

Let us return to the Expression Templates technique with thefollowing Tiger program:

(5 ∗ 10 + 1)

Since the Expression Templates technique was originally used to describe and eval-
uate simple expressions (literals, variables, unary, binary and potentially n-ary oper-
ations), such examples can easily be constructed with it. Here is an example of TAT
corresponding to the previous example:

Listing 11.1.A simple TAT

t yp ed e f BinOp< BinOp< Cons t I n t<5>, Cons t I n t<10>, Times >,
Cons t I n t<1>, P l us >

program t ;

However this covers a very small part of the whole programming language. Impor-
tant features such as type declarations, function declarations and calls, or flow control
cannot be expressed. Moreover, Tiger expressions are typed: we want our compiler to be
able to evaluate and work on typed-expressions. When tryingto translate more complex
examples into TATs, different problems arise such as the list problem, or the reference
problem.

4.1 The list problem

Let us consider this Tiger example:

212

Listing 11.2.Two functions

l e t
f u n c t i on double (x : i n t) : i n t = 2 ∗ x
f u n c t i on sum (a : i n t , b : i n t , c : i n t) : i n t = a + b + c

i n
double (3 0) − sum (6 , 1 , 2)

end

When building this program’s TAT, we need to express lists: declaration lists, func-
tion formals lists, and function call arguments lists. The usual way to do this is to use
recursive lists. A recursive list is defined as empty or as a head element followed by a
tail list.

This can be transposed into C++ with the static list technique described by [12].
We use a template class List, which parameters are the first element (a type), and the
remaining list. A class EmptyList is used to mark the end of the list. With this notation,
we can express lists as types. For example, insum (6, 1, 2) , the argument list can
be expressed with the following TAT:

L i s t< Cons t I n t<6>,
L i s t < Cons t I n t<1>,

L i s t< Cons t I n t<2>,
EmptyL is t

>

>

>

The full TAT conversion of a similar sample is given in the next section. Static lists,
which are a particular case of trees, will be used extensively in the remaining of this
paper: this is our first addition to the Expression Templatestechnique.

4.2 The reference problem

The following simple example illustrate the reference problem:

Listing 11.3.Two variables addition

l e t
var i : i n t := 80
var j : i n t := 6

i n
i + j

end

The expressioni refers to the variable declarationvar i : int := 80 . The
same way, the declarationvar i : int := 80 refers to the builtin typeint . This
example demonstrates that we cannot consider programs as simple trees. The main
structure acts as a tree, but the implicit relations by reference transforms this tree into a
DAG (direct acyclic graph).

213

The TAT has to describe a tree plus some graph relations between a declaration and
its uses. This is the main difficulty compared to the Expression Templates technique.
Without a reference mechanism, we cannot express concepts such as types or functions.

Each time a declaration is referred, we need a pointer to it. The following part shows
how to solve this: each declaration will have a location in anevaluation environment.

5 Evaluation Environment

At every point in the program, there is a set of active declarations which can be used.
An expression such asi + j (listing 11.3), ordouble(30) - sum(6, 1, 2)
(listing 11.2) cannot be evaluated without the declarationcontext: we need to maintain
an environment at evaluation time.

Tiger defines some builtin types and functions. These declarations, visible at every
point in every Tiger program, will be the initial state of ourenvironment. Declarations
that have the same visibility are grouped into scopes. In theremainder of this paper, the
list of declarations of the same scope is called achunk.

The main operations we need on this environment are pushing and popping chunks.
Moreover, we need a way to extract a declaration, given its chunk and its location in the
chunk.

New declarations are introduced with thelet -in -end structure, which is com-
posed of two parts. A first declarative part, located betweenlet andin , allows declar-
ing a chunk. The second part, is an expression, in which we canuse previous declara-
tions. Evaluating the whole structure is done by pushing thechunk into environment,
evaluating the expression and finally popping the chunk.

The environment can also be modified by a function call: when this occurs the
evaluation point is changed. This implies that the set of active declarations changes.

Listing 11.4.A function call

l e t
f u n c t i on double (x : i n t) : i n t = 2 ∗ x

i n
l e t

var i : i n t := 17
i n

double (i) + i
end

end

In the above example, the function call is evaluated the following way:

1. Evaluate function parameters: here i = 17.
2. Initialize formal values: x← i
3. Pop declarations introduced between the function declaration and the function call:

this restores the environment of the function implementation. In our case: pop the
chunk containingvar i : int := 17 , as the function double does not know
this declaration.

214

4. Push formals declarations. Here: push a chunk containingx : int .
5. Evaluate the function body:(2 * x)
6. Restore callers environment:x does not exist any more,i is reintroduced.

At this point, a stack seems to be appropriate for our needs. This stack will be filled
with declaration chunks. A declaration chunk simply contains the corresponding part
of the TAT. At a given evaluation point, each visible declaration is located with a pair
of indexes: the index of the chunk, and the index of the declaration in the chunk. So a
simple pair of indexes is enough to refer to a declaration.

The example 11.3 can now be translated into the following TAT:

Let InEnd<
L i s t < Var< Cons t I n t< 80 >, b u i l t i n t y p e s , i n t t y p e >,

L i s t< Var< Cons t I n t< 6 >, b u i l t i n t y p e s , i n t t y p e >,
EmptyL is t > >,

BinOp< SimpleVar< 0 , 0 >, SimpleVar< 0 , 1 >, P l us >

>

The pair< 0, 0 > refers to the first declaration of the first chunk, which corresponds
to var i:= 80 . The pair< 0, 1 > refers tovar j:= 6 . builtin types and
int type are predefined integer values, which identify the builtinint Tiger type.
This mechanism of environment and location pair is a form of static pointers.

We are also able to translate example 11.4:

Let InEnd< l e t
L i s t < Funct ion< L i s t< f u n c t i on double (

TypeLnk< b u i l t i n t y p e s , 1 > >, x : i n t) =
BinOp< Cons t I n t< 2 >, 2

SimpleVar<1, 0 >, Times >, ∗ x
0 > >,

Let InEnd< i n
L i s t< Var i ab le< Cons t I n t< 17 >, l e t

b u i l t i n t y p e s , 1 > >, var i : i n t := 17
i n

BinOp< FuncCal l< 0 , 0 , doub le (
L i s t< SimpleVar< 1 , 0 > > >, i)

SimpleVar< 1 , 0 >, P l us > + i
> end

> end

Let’s remember the goal: translating an AST into a C++ type (the TAT), so that the
compiler can work on this type. In the proposed implementation, the environment re-
lated computations are done at compile-time. Meta-programming techniques will allow
us to reduce the execution-time work considerably.

6 Implementation

The basis of the Expression Templates technique is to write atemplate class per kind of
node available in the AST. The parameters of this template are the node subtrees. Each
of these template classes correspond to a node of the AST.

215

These template classes fulfill two roles: first they express the AST information. This
is implicitly done with class organization into the TAT. Second, our classes must provide
evaluation code.

In the case of expressions, this consists on two tasks: the type calculation, and the
value calculation. The declaration classes provide some other services such as common
operations for types.

Apart from AST meta-classes, we also need to provide meta-code to perform some
static processing. This corresponds to the set of operations related to the evaluation
environment.

6.1 Global organization

Two kinds of classes have to be written: expression classes and declaration classes. Dec-
larations will be further distinguished via classes specialized for type, variable and func-
tion declarations. Moreover, the implementation also includes the environment mecha-
nism, and tools for its manipulation.

Note that the base classesAstNode , Expression , Declaration ,
TypeDec ... are only used for some static checking. These classes arenot very
interesting, and will not be detailed in this paper.

6.2 Expression classes

As in the Expression Templates technique, each Expression class will implement an
evaluation method. These methods are inlined, so that the C++ compiler can build effi-
cient evaluation code.

The main difference with Expression Templates is due to the evaluation environ-
ment: The evaluation method depends on the current environment. Another striking
difference is that expressions are typed. Evaluating an expression consists in comput-
ing both its type and value. We want expression types to be evaluated statically: this
work will be done through typedefs. All the typed values thatwe manipulate are repre-
sented with four bytes. In order to simplify, we decided to represent all variables with
thevoid * type. This lead us to the following model adopted by all expression classes:

/ / v a r t r e p r e s e n t a non−t yped va lue .
t yp ed e f void∗ v a r t ;

/ / Here comes t h e t e m p l a t e paramete rs : t h e TAT s u b t r e e s .
template< . . . >

s t r u c t AnExpress ion : p u b l i c E x p r e s s i o n
{

/ / E v a l u a t i o n i s dependen t o f c u r r e n t env i ronment .
template<c l a s s T env>
s t r u c t e v a l
{

/ / s t a t i c a l l y compute t h e e x p r e s s i o n t y p e
t yp ed e f . . . T ;

216

/ / i n l i n e method t h a t e v a l u a t e s t h e e x p r e s s i o n va lue
i n l i n e v a r t d o i t () { . . . }

} ;
} ;

template<s igned Value>
s t r u c t C o n s t I n t : p u b l i c E x p r e s s i o n
{

template<c l a s s T env>
s t r u c t e v a l
{

t yp ed e f I n tType T ;
i n l i n e v a r t d o i t () { re tu rn (v a r t) Value ;}

} ;
} ;

ConstInt < 123 > is a TAT: its value and type can be evaluated:

t yp ed e f Cons t I n t<123> program t ;

v a r t va l ue = programt : : eva l< i n i t i a l e n v t > : : d o i t () ;
t yp ed e f program t : : eva l< i n i t i a l e n v t > : :T t ype ;

Notice that ”:: ” is C++ for Java ”. ”
Two types are predefined:

– var t represents all Tiger variables. For example, anint can directly be casted
into a var t (these two types have the same size: four bytes). Most of timea
var t corresponds to a record pointer or an array pointer.

– initial env t corresponds to the Tiger builtin environment: builtin types such
asIntType or StringType , and builtin functions (print , ord , concat ...).

The TAT given in listing 11.1 can now be evaluated. Here is thetemplate expansion
chain that leaded to the result: 51.

1 . p rog ram t : : eva l< i n i t i a l e n v t > : : d o i t ()
2 . BinOP< Cons t I n t<5>, Cons t I n t<10>, Times >

: : eva l< i n i t i a l e n v t > : : d o i t () +
Cons t I n t<1>:: eva l< i n i t i a l e n v t > : : d o i t () ;

3 . Cons t I n t<5>:: eva l< i n i t i a l e n v t > : : d o i t () ∗
Cons t I n t<10>:: eva l< i n i t i a l e n v t > : : d o i t () + 1 ;

4 . 5 ∗ 10 + 1
5 . 51

6.3 Declaration classes

The first role of declaration classes is to store informationrelative to the declaration. For
example a variable declaration must store its type and initial value. This is done with
template parameters exactly as above. The second role of declaration classes depends

217

on the kind of declaration. For variables and functions, only some utility functions are
implemented. The type classes do more things: their second role is to implement all
operations related to the type: assignment, comparison, creation and destruction. These
operations can depend on the environment. This is for example the case for an array,
which refers to the type of its elements.

Here is the model of type declaration classes:

s t r u c t AType : p u b l i c TypeDec
{

/ / Type e v a l depends on env i ronment
template<c l a s s T env>
s t r u c t e v a l
{

/ / Common o p e r a t i o n s are implemented here
void c r e a t e (v a r t& v) ;
void d e s t r o y (v a r t v) ;
void a s s i g n (v a r t& l e f t , v a r t r i g h t) ;
i n t compare (v a r t l e f t , v a r t r i g h t) ;

} ;
} ;

Such classes are implemented forVoidType , IntType , StringType ,
ArrayType andRecordType .

Each new type definition in a Tiger program, will result in newtype operations. Our
Tiger compiler generates evaluation code, but also operations code. In order to emphasis
on this contribution, we chose to implement assignment and comparison as structural.
At the contrary to the Tiger specifications, when two recordsare compared, this is done
member by member. When an array is assigned, the all content is copied.

6.4 Program Environment

We have seen that type and expression evaluations depend on an environment, through
the type identified byT env in the previous code samples. We want the environment
to be computed statically: we need an implementation which allows to push, pop, and
retrieve declarations at compile-time. Therefore we use again static lists: an environ-
ment is implemented as a static list of declaration chunks. Adeclaration chunk is a
part the TAT which is also a static list. This construction allows us to manipulate the
environment:

Pushing and popping declaration chunks is done with typedefs:

/ / Push T new chunk on Tenv , y i e l d i n g Tnew env .
t yp ed e f L i s t < T new chunk , T env > T new env ;

/ / Pop an e lemen t o f Tenv , y i e l d i n g Tnew env .
t yp ed e f T env : : t a i l T new env ;

Environment access is done with a template class and a specialization:

template<c l a s s T env , unsigned N>

218

s t r u c t L i s t G e t
{

t yp ed e f L i s tGe t<T env : : t a i l , N − 1> : :T T ;
} ;

template<c l a s s T env>
s t r u c t L i s tGe t<T env , 0>
{

t yp ed e f T env : : head T ;
} ;

/ / Access t o t h e chunk number 3 .
t yp ed e f typename L i s tGe t<T env , 3> : :T T chunk 3 ;
/ / Access t o t h e d e c l a r a t i o n number 1 o f t h i s chunk .
t yp ed e f typename L i s tGe t<T chunk 3 , 1> : :T T d e c l 3 1 ;

We are now able to write a simplified version of theLetInEnd template class.

template<c l a s s T dec l , c l a s s T exp>
s t r u c t Let InEnd
{

template<c l a s s T env>
s t r u c t e v a l
{

t yp ed e f L i s t<T dec l , T env> T new env ;
t yp ed e f T exp : : eva l<T new env> : :T T ;
v a r t d o i t ()
{

/ / Create new v a r i a b l e s d e c l a r e d i n Td e c l
/ / (no t d e t a i l e d here) .

/ / Eva lua te t h e e x p r e s s i o n i n t h e new env i ronment .
v a r t r e s = T exp : : eva l<T new env> : : d o i t () ;

/ / Des t roy t h e v a r i a b l e s d e c l a r e d i n Td e c l
/ / (no t d e t a i l e d here) .

re tu rn r e s ;
}

} ;
} ;

All the needed operations on the environment can be done withtype operations: we
are able to fully compute the environment at compile-time for each evaluation point.
Function calls are not detailed here, but they use the same operations. Note that all
functions are evaluated each time they are called (as inlinefunctions). This implies that
if we want a recursive function to be translated as a C++ recursive function, we need
the environment to be exactly the same at each recursive call.

219

6.5 The dynamic part

Not everything can be done at compile-time. The Tiger language allows some construc-
tions which cannot be resolved statically.

The main dynamic stuff is the variable declaration and use. When a variable is
declared, we need to store its value somewhere. At each evaluation point of the program,
there is a set of variables which are accessible.

A variable can be of any supported Tiger type: it can be an array, a string or a record.
There is no static representation of such values: we need to store this into memory at the
program execution. Therefore we use the C++ stack: variables declared in alet -in -
end construction are declared as local variables in theLetInEnd evaluation method.

The Tiger has a nested let declaration. At a given evaluationpoint, there can be
several visible scopes. This obliges us to maintain a stack of scope pointers during the
whole execution process. Accessing a variable is performedwith two indirections: a
first one to get the right scope and another one to reach the variable into this scope.
We could have chose to implement variables access with a static link mechanism. This
would corresponded to the adaptable closure present in the phoenix library, part of the
spirit project ([4]).

These indirections are our main limitation to really perform a static resolution of
programs. Conversely, here is a program that isentirelystatically evaluated:

Listing 11.5.A program solved statically

l e t
f u n c t i on foo () = 20 ∗ 20
f u n c t i on bar () = 30 / 2
f u n c t i on smousse () = i f (80 > 6) then 1 e l s e 0

i n
(foo () + ba r () + smousse ())∗ 4

end

There is no variable used so, after our transform towards C++, we can expect that
a C++ compiler can statically solve this program. In this particular case, using a C++
compiler which has good optimization capacities, we directly obtain one assembler
instruction which gives the integer result.

6.6 The C++ program

The C++ program always have the same structure:

/ / I n c l u d e a l l t e m p l a t e c l a s s e s needed t o e x p r e s s and e v a l u at e
t h e AST .

in c l u d e "all.h"

/ / Generate t h e TAT .
t yp ed e f . . . p rog ram t ;

i n t main ()
{

220

/ / i n s t a n t i a t e program e v a l u a t i o n
re tu rn (i n t) p rog ram t : : eva l< i n i t i a l e n v t > : : d o i t () ;

}

The line of the main() launch the doit() instantiation, which results in the generation
of the program evaluation code. This work is done by the C++ compiler.

7 Results

Our compiler covers all of the Tiger language. Lot of Tiger programs have been tested,
and work successfully. Our process has been tested with como, g++ 3.2 and icc which
gives slightly faster programs.

To experiment the performance of generated code, some Tigerprograms compiled
with our process have been compared to their C hard-coded equivalent. In average, the
C program goes two to three times faster than the (C++) Tiger one. This performance
lack is mostly explained by the variable access cost: each access needs two indirections.
But viewed as an evaluation process, this can be considered as good results.

This performance highly depends on the aptitude of the C++ compiler to optimize
code. These optimizations are essentially obtained by the inlining mechanism. This op-
timization has been tested using the g++ option called-finline-limit . This op-
tion influences the quantity of functions inlined. This experience showed us the impor-
tance of good inlining at compile-time. Optimizations are done until approximatively
-finline-limit-1000 , which is much more than for usual C++ programs. This
can be explained by the amount of functions that are instantiated. Indeed for each node
of the AST, there is at least one function which will be used.

8 Conclusion

We have seen that a program can be expressed as an Abstract Syntax Tree (AST) given
the language grammar. Using a technique based on ExpressionTemplates, we are able
to build a C++ type which describes this AST. This representation is called the TAT
(Tree As Type).

Building and evaluating the TAT poses various problems. We need to express lists
(for declarations, arguments, etc.). This problem is solved using the Static list technique.
In the TAT, some elements refer to others. The reference problem implies the use of
an environment which is implemented using a stack. We have seen that this container
allows the required operations: pushing, popping and accessing. This stack is directly
filled with parts of the TAT: this is a form of static pointers,which solves the reference
problem.

An implementation based on the Tiger language has been proposed. This imple-
mentation intensively uses meta-programming techniques,therefore, the C++ compiler
is able to do lot of work at compile-time: expression types and element references are
solved statically. The limits of static resolution is the use of variables which can only
be manipulated dynamically.

221

Our Tiger compiler is originally inspired by the ExpressionTemplates technique.
However, the evaluated constructions are not restricted tobasic ones, such as unary or
binary operators, but includes the common flow control constructions, structured types,
variables, and nested functions. Moreover, thanks to the use of a static environment,
such advanced operations can be evaluated by jumping from one point of the program
to another. This happens for example each time a function is called. That characteristic
is a noticeable difference with the Expression Templates which are evaluated in a simple
bottom-up fashion.

This original technique shows how we used C++ meta-programming in order to
work on abstract syntax trees of a mostly functional programming language. Indeed the
C++ generative power allowed us to implement compiler partsand translation into C++
equivalent code.

222

Parsing
Semantical

analysis
Operational

analysis

type checking,
scopes,

bindings

lexical analysis,
grammatical analysis

Tiger
source

program

Executable
code

template instantiation,
transformations

...

Front-end program C++ compiler

C++
code
with
TAT Static

evaluation
Dynamic

evaluation

Two layer
evaluation

function inlining,
types resolution

instanciated
templates

Fig. 1. Placement in the compilation chain

Const : 80

Plus

VarDec

LetInEnd

int

SimpleVar SimpleVar

List

List

VarDec EmptyList

Const : 6

Fig. 2. AST of example 11.3

AstNode

FuncDec

Declaration

TypeDec VarDec

Expression

Fig. 3. Main kind of classes

223

Bibliography

[1] A.W. Appel. Modern Compiler Implementation in C / Java / ML. Cambridge
University Press, 1997.

[2] J.A. Crotinger, J. Cummings, S. Haney, W. Humphrey, S. Karmesin, J. Reyn-
ders, S. Smith, and T.J. Williams. Generic programming in POOMA and PETE.
In Generic Programming, Proceedings of the International Seminar on Generic
Programming, volume 1766 ofLecture Notes in Computer Science, pages 218–.
Springer-Verlag, 2000.

[3] K. Czarnecki and U. Eisenecker.Generative Programming: Methods, Techniques
and Applications. Addison-Wesley, 2000.

[4] Spirit group. Spirit parser framework, 2002.
[5] S. Haney and J. Crotinger. How templates enable high-performance scientific

computing in C++.Computing in Science and Engineering, 1(4), 1999.
[6] G. Powell J. Jarvi. The boost lambda library, 2002.
[7] J. Järvi. Compile time recursive objects in C++. InTechnology of Object-Oriented

Languages and Systems, pages 66–77. IEEE Computer Society Press, 1998.
[8] Brian McNamara and Yannis Smaragdakis. Functional programming in C++ using

the FC++ library.SIGPLAN Notices, April 2001.
[9] Jörg Striegnitz and Stephen A. Smith. An expression template aware lambda func-

tion. In First Workshop on C++ Template Programming, Erfurt, Germany, Octo-
ber 10 2000.

[10] C. van Reeuwijk. Rapid and robust compiler construction using template-based
metacompilation. In12th International Conference on Compiler Construction,
Lecture Notes in Computer Science, pages 247–, Warsaw, Poland, April 2003.
Springer-Verlag.

[11] T. Veldhuizen. Expression templates.C++ Report, 7(5):26–31, June 1995.
[12] T. Veldhuizen. Techniques for scientific C++. Technical report, Computer Science

Department, Indiana University, Bloomington, USA, 2002.

A A simple C++ meta-program and its evaluation

template<unsigned i >
s t r u c t f a c t o r i a l
{

enum { r e s = i ∗ f a c t o r i a l< i − 1 > : : r e s} ;
} ;

template<>

s t r u c t f a c t o r i a l <0>
{

enum { r e s = 1} ;

224

} ;

enum { f a c t 4 = f a c t o r i a l<4>:: r e s } ;

Thanks to the template expansion mechanism, this C++ meta-function allows to com-
pute a factorial at compile-time:

f a c t o r i a l <4>:: r e s
4 ∗ f a c t o r i a l <3>:: r e s
4 ∗ 3 ∗ f a c t o r i a l <2>:: r e s
4 ∗ 3 ∗ 2 ∗ f a c t o r i a l <1>:: r e s
4 ∗ 3 ∗ 2 ∗ 1 ∗ f a c t o r i a l <0>:: r e s
4 ∗ 3 ∗ 2 ∗ 1 ∗ 1
24

B A full tiger program

l e t
type any = {any : i n t }
var b u f f e r := g e t c h a r ()

f u n c t i on p r i n t i n t (i : i n t) =
l e t f u n c t i on f (i : i n t) = i f i >0

then (f (i / 1 0) ; p r i n t (ch r (i−i /10∗10+ ord (” 0 ”))))
i n i f i <0 then (p r i n t (” −”) ; f (− i))

e l s e i f i >0 then f (i)
e l s e p r i n t (” 0 ”)

end

fu n c t i on r e a d i n t (any : any) : i n t =
l e t var i := 0

f u n c t i on i s d i g i t (s : s t r i n g) : i n t =
ord (b u f f e r)>=ord (” 0 ”) & ord (b u f f e r)<=ord (” 9 ”)

f u n c t i on s k i p t o () =
whi le b u f f e r =” ” | b u f f e r =”\n”

do b u f f e r := g e t c h a r ()
i n s k i p t o () ;

any . any := i s d i g i t (b u f f e r) ;
whi le i s d i g i t (b u f f e r)

do (i := i ∗10+ ord (b u f f e r)−ord (” 0 ”) ; b u f f e r := g e t c h a r ()) ;
i

end

type l i s t = { f i r s t : i n t , r e s t : l i s t}

f u n c t i on r e a d l i s t () : l i s t =
l e t var any := any{any =0}

225

var i := r e a d i n t (any)
i n i f any . any

then l i s t { f i r s t = i , r e s t = r e a d l i s t ()}
e l s e n i l

end

fu n c t i on merge (a : l i s t , b : l i s t) : l i s t =
i f a=n i l then b
e l s e i f b=n i l then a
e l s e i f a . f i r s t < b . f i r s t

then l i s t { f i r s t =a . f i r s t , r e s t =merge (a . r e s t , b)}
e l s e l i s t { f i r s t =b . f i r s t , r e s t =merge (a , b . r e s t)}

f u n c t i on p r i n t l i s t (l : l i s t) =
i f l = n i l then p r i n t (” \ n ”)
e l s e (p r i n t i n t (l . f i r s t) ; p r i n t (” ”) ; p r i n t l i s t (l . r e s t))

var l i s t 1 := r e a d l i s t ()
var l i s t 2 := (b u f f e r := g e t c h a r () ; r e a d l i s t ())

i n
p r i n t (” l i s t 1 : \n ”) ;
p r i n t l i s t (l i s t 1) ;
p r i n t (” l i s t 2 : \n ”) ;
p r i n t l i s t (l i s t 2) ;
p r i n t (” merged l i s t : \n ”) ;
p r i n t l i s t (merge (l i s t 1 , l i s t 2))

end

C TAT of the previous program

The following program compiles in less than two minutes withg++ 3.2 on a 350Mhz
processor.

inc lude "all.h"

t ype de f LetInEnd< L i s t< RecordType< L i s t< TypeLnk< b u i l t i n t y p e s , 1> > > >,
Let InEnd< L i s t< Va r ia b le< FuncCa l l< b u i l t i n f u n c s , 9 , L i s t< > >, b u i l t i n t y p e s , 2

> >,
Let InEnd< L i s t<
Func t ion< L i s t< TypeLnk< b u i l t i n t y p e s , 1> >, Let InEnd< L i s t<
Func t ion< L i s t< TypeLnk< b u i l t i n t y p e s , 1> >, I f < BinOp< SimpleVar< 5 , 0 >,

C ons t In t< 0 >, Grea tThan>, ExpL is t< FuncCa l l< 4 , 0 , L i s t< BinOp< SimpleVar< 5 ,
0 >, C ons t In t< 10 >, D iv ide > > >, ExpL is t< FuncCa l l< b u i l t i n f u n c s , 0 , L i s t<
FuncCa l l< b u i l t i n f u n c s , 4 , L i s t< BinOp< BinOp< SimpleVar< 5 , 0 >, BinOp< BinOp<

SimpleVar< 5 , 0 >, C ons t In t< 10 >, D iv ide >, C ons t In t< 10 >, Times >, Minus >,
FuncCa l l< b u i l t i n f u n c s , 3 , L i s t< C ons tS t r i ng< 0 > > >, P lus > > > > > > > >, 4
>

>,
ExpL is t< I f < BinOp< SimpleVar< 3 , 0 >, C ons t In t< 0 >, LessThan>, ExpL is t<

FuncCa l l< b u i l t i n f u n c s , 0 , L i s t< C ons tS t r i ng< 1 > > >, ExpL is t< FuncCa l l< 4 , 0 ,
L i s t< BinOp< C ons t In t< 0 >, SimpleVar< 3 , 0 >, Minus > > > > >, I f < BinOp<

SimpleVar< 3 , 0 >, C ons t In t< 0 >, Grea tThan>, FuncCa l l< 4 , 0 , L i s t< SimpleVar<
3 , 0 > > >, FuncCa l l< b u i l t i n f u n c s , 0 , L i s t< C ons tS t r i ng< 2 > > > > > > >

226

, 2 >
, L i s t<
Func t ion< L i s t< TypeLnk< 0 , 0 > >, Let InEnd< L i s t< Va r ia b le< C ons t In t< 0 >,

b u i l t i n t y p e s , 1> >,
Let InEnd< L i s t<
Func t ion< L i s t< TypeLnk< b u i l t i n t y p e s , 2> >, I f < BinOp< FuncCa l l< b u i l t i n f u n c s ,

3 , L i s t< SimpleVar< 1 , 0 > > >, FuncCa l l< b u i l t i n f u n c s , 3 , L i s t< C ons tS t r i ng<
3 > > >, GreatEq >, BinOp< FuncCa l l< b u i l t i n f u n c s , 3 , L i s t< SimpleVar< 1 , 0 > >
>, FuncCa l l< b u i l t i n f u n c s , 3 , L i s t< C ons tS t r i ng< 4 > > >, LessEq >, C ons t In t<

0 > >, 5 >
, L i s t<
Func t ion< L i s t< >, While< I f < BinOp< SimpleVar< 1 , 0 >, C ons tS t r i ng< 5 >, Equal

>, C ons t In t< 1 >, BinOp< SimpleVar< 1 , 0 >, C ons tS t r i ng< 6 >, Equal > >, Ass ign<
SimpleVar< 1 , 0 >, FuncCa l l< b u i l t i n f u n c s , 9 , L i s t< > > > >, 5 >

> >,
ExpL is t< FuncCa l l< 5 , 1 , L i s t< > >, ExpL is t< Assign< Fie ldVar< SimpleVar< 3 , 0 >,

0 >, FuncCa l l< 5 , 0 , L i s t< SimpleVar< 1 , 0 > > > >, ExpL is t< While< FuncCa l l<
5 , 0 , L i s t< SimpleVar< 1 , 0 > > >, ExpL is t< Assign< SimpleVar< 4 , 0 >, BinOp<
BinOp< BinOp< SimpleVar< 4 , 0 >, C ons t In t< 10 >, Times >, FuncCa l l<
b u i l t i n f u n c s , 3 , L i s t< SimpleVar< 1 , 0 > > >, P lus >, FuncCa l l< b u i l t i n f u n c s ,
3 , L i s t< C ons tS t r i ng< 7 > > >, Minus > >, ExpL is t< Assign< SimpleVar< 1 , 0 >,
FuncCa l l< b u i l t i n f u n c s , 9 , L i s t< > > > > > >, ExpL is t< SimpleVar< 4 , 0 > > > >
> > >

, 2 >
> >,

Let InEnd< L i s t< RecordType< L i s t< TypeLnk< b u i l t i n t y p e s , 1 >, L i s t< TypeLnk< 3 , 0
> > > > >,

Let InEnd< L i s t<
Func t ion< L i s t< >, Let InEnd< L i s t< Va r ia b le< Record< 0 , 0 , L i s t< C ons t In t< 0 > >

>, 0 , 0 >, L i s t< Va r ia b le< FuncCa l l< 2 , 1 , L i s t< SimpleVar< 6 , 0 > > >,
b u i l t i n t y p e s , 1> > >,

ExpL is t< I f < Fie ldVar< SimpleVar< 6 , 0 >, 0 >, Record< 3 , 0 , L i s t< SimpleVar< 6 , 1
>, L i s t< FuncCa l l< 4 , 0 , L i s t< > > > > >, N i l > > >

, 4 >
, L i s t<
Func t ion< L i s t< TypeLnk< 3 , 0 >, L i s t< TypeLnk< 3 , 0 > > >, I f < BinOp< SimpleVar<

5 , 0 >, Ni l , Equal >, SimpleVar< 5 , 1 >, I f < BinOp< SimpleVar< 5 , 1 >, Ni l ,
Equal >, SimpleVar< 5 , 0 >, I f < BinOp< Fie ldVar< SimpleVar< 5 , 0 >, 0 >,
F ie ldVar< SimpleVar< 5 , 1 >, 0 >, LessThan>, Record< 3 , 0 , L i s t< Fie ldVar<
SimpleVar< 5 , 0 >, 0 >, L i s t< FuncCa l l< 4 , 1 , L i s t< Fie ldVar< SimpleVar< 5 , 0 >,
1 >, L i s t< SimpleVar< 5 , 1 > > > > > > >, Record< 3 , 0 , L i s t< Fie ldVar<

SimpleVar< 5 , 1 >, 0 >, L i s t< FuncCa l l< 4 , 1 , L i s t< SimpleVar< 5 , 0 >, L i s t<
Fie ldVar< SimpleVar< 5 , 1 >, 1 > > > > > > > > > >, 4 >

, L i s t<
Func t ion< L i s t< TypeLnk< 3 , 0 > >, I f < BinOp< SimpleVar< 5 , 0 >, Ni l , Equal >,

FuncCa l l< b u i l t i n f u n c s , 0 , L i s t< C ons tS t r i ng< 8 > > >, ExpL is t< FuncCa l l< 2 , 0 ,
L i s t< Fie ldVar< SimpleVar< 5 , 0 >, 0 > > >, ExpL is t< FuncCa l l< b u i l t i n f u n c s ,

0 , L i s t< C ons tS t r i ng< 9 > > >, ExpL is t< FuncCa l l< 4 , 2 , L i s t< Fie ldVar<
SimpleVar< 5 , 0 >, 1 > > > > > > >, 4 >

> > >,
Let InEnd< L i s t< Va r ia b le< FuncCa l l< 4 , 0 , L i s t< > >, b u i l t i n t y p e s , 0 >, L i s t<

Va r ia b le< ExpL is t< Assign< SimpleVar< 1 , 0 >, FuncCa l l< b u i l t i n f u n c s , 9 , L i s t<
> > >, ExpL is t< FuncCa l l< 4 , 0 , L i s t< > > > >, b u i l t i n t y p e s , 0> > >,

ExpL is t< FuncCa l l< b u i l t i n f u n c s , 0 , L i s t< C ons tS t r i ng< 10 > > >, ExpL is t<
FuncCa l l< 4 , 2 , L i s t< SimpleVar< 5 , 0 > > >, ExpL is t< FuncCa l l< b u i l t i n f u n c s ,
0 , L i s t< C ons tS t r i ng< 11 > > >, ExpL is t< FuncCa l l< 4 , 2 , L i s t< SimpleVar< 5 , 1 >
> >, ExpL is t< FuncCa l l< b u i l t i n f u n c s , 0 , L i s t< C ons tS t r i ng< 12 > > >, ExpL is t<
FuncCa l l< 4 , 2 , L i s t< FuncCa l l< 4 , 1 , L i s t< SimpleVar< 5 , 0 >, L i s t< SimpleVar<
5 , 1 > > > > > > > > > > > > > > > > > >

p rog ra m t ;

c ons t char∗ metasmousse : : c o n s ts t r i n g [] = {"0" , "-" , "0" , "0" , "9" , " " , "\012
" , "0" , "\012" , " " , "list 1 : \012" , "list 2 : \012" , "merged list : \012" ,
NULL} ;

i n t main ()
{

227

re turn (i n t) p rog ra m t : : eva l< i n i t i a l e n v t >:: d o i t () ;
}

228

JSetL: Declarative Programming in Java
with Sets

Elisabetta Poleo and Gianfranco Rossi

Dip. di Matematica, Università di Parma,
Via M. D’Azeglio 85/A, 43100 Parma (Italy)

gianfranco.rossi@unipr.it

Abstract. In this paper we present a Java library—called JSetL—that offers a
number of facilities to support declarative programming like those usually found
in logic or functional declarative languages: logical variables, list and set data
structures (possibly partially specified), unification andconstraint solving over
sets, nondeterminism. The paper describes the main features of JSetL and it
shows, through a number of simple examples, how these features can be exploited
to support a real declarative programming style in Java.

Keywords: Declarative Programming; Constraint Programming; Java;Nondeter-
minism.

1 Introduction

Declarative programming(DP) is usually called into play in the context of functional
and logic programming languages (e.g., Haskell and Prolog). Intuitively, declarative
programming means focusing onwhata program does, rather than onhow it does. No-
tions such as logical variables, side-effect freeness, functional composition, recursion,
nondeterminism, etc., are all valuable features of a programming language that sup-
ports declarative programming. High-level of control and data abstractions, as well as
a clear semantics, are also fundamental features to supportthe declarative reading of a
program. Declarative programming have been mainly exploited in artificial intelligence
and automated reasoning applications, but most of its features can be conveniently used
also in more general settings to support rapid software prototyping and (automatic)
program verification, as well as to allow parallel executionof programs.

Declarative programming is often associated withconstraint programming(CP),
both in the context of logic programming languages (e.g., ECLIPSE [9]), and in the
context of functional and functional plus logic programming languages (e.g., Oz [13])).
As a matter of fact, constraints provide a powerful tool for stating solutions as sets of
equations and disequations over the selected domains, which are then solved by us-
ing domain specific knowledge, with no concern to the order inwhich they occur in the
program. As such, CP languages constitute powerful modelling tool, in particularly suit-
able to coincisely express solutions for artificial intelligence and constraint-satisfaction
problems (e.g, combinatorial problems).

While it is undeniable that DP languages (and, in particular, CP languages) provide
valuable support for programming, it is also a reality that most real-world software

229

development is still done using traditional, possibly object-oriented (OO), programming
languages, such as C++ and Java.

Efforts to make DP languages more appealing for real-world applications have led
to various proposals, mainly intended to include object-oriented features into DP lan-
guages: several languages, like Prolog and Haskell, have indeed object-oriented exten-
sions. A complementary approach is trying to embed DP features in a more conven-
tional framework—in particular an object-oriented one—inwhich one can exploit the
DP paradigm while retaining all the advantages of constructs for programming and
software structuring that are typical of conventional programming languages. This in-
tegration can take place according to (at least) two distinct approaches:(i) making the
new features available as part of alibrary for some existing language;(ii) defining a
new programming language, or extending an existing one, in such a way DP features
are viewed as “first-class citizens” of the language itself.Both approaches have pros
and cons and a precise comparison of them is likely to be an interesting topic for future
research.

One of the best known proposals that integrate some DP features in a conventional
OO framework following thelibrary approachis that of the ILOG Solver [14, 12]. In
this system, constraints and logical variables are handledas objects and are defined
within a C++ class library. Thanks to the encapsulation and operator overloading mech-
anisms, programmers can view constraints almost as if they really were part of the lan-
guage. Among other proposals that take a similar approach wecan mention INC++ [11],
NeMo+ [16], and JSolver [2], as concerns the addition of constraints to OO languages,
while Frappè [3] and Gisela [10] are two proposals that facethe more general problem
of making declarative programming features available in a conventional programming
environment, though focusing on some specific applications. Another proposal that can
be cited in this context istu Prolog [5], a Java package that implements Prolog.

Thenew language approach, in the context of conventional programming languages
(approach(ii)), is adopted for instance in the language Alma-0 [1], in Singleton [15],
and in DJ (Declarative Java) [17, 18]. A potential advantageof this approach with re-
spect to that based on a library is that it allows a tighter integration between constructs
of the host language and DP facilities, making programs simpler and more “natural”
to write. On the other hand, however, the design and development of a new language
is surely a more difficult task, and the resulting systems arelikely to be less easy to
integrate with other existing systems and to be accepted by programmers.

The work presented in this paper is another proposal following the OO library ap-
proach: we endow an OO language, namely Java, with facilities for supporting declara-
tive programming, by providing them as a library—called JSetL. Differently from other
related work we do not restrict ourselves to constraints, but we try to provide a more
comprehensive collection of facilities to support a real declarative style of program-
ming. Furthermore, we try to keep our proposal as general as possible, to provide a
general-purpose tool not devoted to any specific application. The most notable features
of JSetL are:

– logical variables;
– list and set data structures, possibly partially specified (i.e., containing uninitialized

logical variables)

230

– unification (in particular, unification over lists and sets)
– a powerful set constraint solver which allows to compute with partially specified

data
– nondeterminism (though confined to constraint solving).

We claim that these facilities provide a valuable support todeclarative program-
mingand we show this with a number of simple examples. In particular the constraint
solver allows complex (set) expressions to be checked for satisfiability, disregarding
their order and the instantiation of (logical) variables occurring in them. Moreover, the
use of partially specified data structures, along with the nondeterminism “naturally”
supported by operations over sets, are fundamental features to allow the language to be
used as a highly declarative modelling tool.

The paper is organized as follows. In Section 2 we give an informal presentation
of JSetL by showing a simple Java program using JSetL. In Section 3 we introduce
the fundamental data structures of JSetL, namely logical variables, sets and lists. In
Section 4, we describe the (set) constraint handling facilities supported by our library
and we show how constraint solving can be accomplished, and how it interacts with
the usual notion of program computation. The fundamental notion of nondeterminism
and its relationship with sets is addressed in Section 5. In Section 6 we show how user
defined constraints can be introduced in a program and how they can be used. Finally,
in Section 7 we briefly discuss future work.

2 An informal introduction to programming with JSetL

First of all we show a simple example of a Java program using JSetL which allows us
to give the flavor of the programming style supported by the library.

Problem: Compute and print the maximum of a set of integerss .

A truly declarative solution for this problem can be stated as follows: an elementx of
s is the maximum ofs , if for each elementy of s it holds thaty ≤ x . The program
below shows how this solution can be immediately implemented in Java using JSetL.
Observe that here we are deliberately assuming that execution is not a primary require-
ment. Indeed, JSetL is mainly conceived as a tool for rapid software prototyping, where
easiness of program development and program understandingprevail over efficiency.

class Max
{
public static Lvar max(Set s) throws Failure

{
Lvar x = new Lvar();
Lvar y = new Lvar();
Solver.add(x.in(s));
Solver.forall(y,s,y.leq(x));
Solver.solve();
return x;
}

231

public static void main (String[] args)
throws IOException, Failure

{
int[] sample set elems = {1,6,4,8,10,5 };
Set sample set = new Set(sample set elems);
System.out.print(" Max = ");
max(sample set).print();
}

}

For the sake of simplicity we assume that the set of integers is directly supplied by
the program (instead of being read for instance from a file). Hence we will focus on the
definition of the methodmax that computes the maximum ofs . x andy in max are
two logical variables and both are uninitialized. Invocation of theadd method adds the
constraintx.in(s) (i.e.,x ∈ s) to the current constraint store. This constraint is eval-
uated totrue if s is a set andx belongs tos . If x is uninitialized when the expression
is evaluated this amounts tonondeterministicallyassign an element ofs to x . Invoca-
tion of the forall method allows us to add to the constraint store a new constraint
y.leq(x) (i.e., y ≤ x) for eachy belonging tos . As soon as thesolve method
is invoked the constraint solver checks whether the currentcollection of constraints in
the constraint store is satisfiable or not. If it is, the invocation of thesolve method ter-
minates with success. The value ofx represents the integer we are looking for and it is
returned as the result ofmax. If, on the contrary, one of the constraints in the constraint
store is evaluated tofalse, backtracking takes place and the computation goes back till
the nearest choice point. In this case, the nearest and only choice point is the one cre-
ated by thex.in(s) constraint. Its execution will bind nondeterministicallyx to each
element ofs , one after the other. If all values ofs have been attempted, there is no fur-
ther alternative to explore and the computation ofmax terminates raising an exception
Failure . If no catch clause for this exception is provided, the whole computation
terminates reporting a failure (actually this is not the case of themax method, since a
value ofx for which all the constraints hold surely exists—exactly the maximum ofs).

Executing the program with the sample set of integers declared in themain method
causes the messageMax = 10 to be printed to the standard output.

3 Logical variables and composite data objects

JSetL provides logical variables and two new kinds of data structures: sets and lists.
These new features are implemented by three classes,Lvar , Lst , andSet , for cre-
ation and manipulation of logical variables, lists and sets, respectively.

Lists and sets represent two different data abstractions: while in lists the order and
repetitions of elements are important, in sets order and repetitions of elements do not
matter. Thus, for instance,{1, 2}, {2, 1}, and{2, 1, 2} all denote the same set, while
the analogous list expressions denote different lists. Although sets and lists can be often
used interchangeably, there are cases—especially when sets and lists contain unknown
elements—in which one choice can be more appropriate than the other one. For ex-
ample, if one wants to represent an undirected graph, arcs are likely to be represented

232

as sets rather than as lists. As another example, if one wantsto state that a collection
C must contain the number1, disregarding the position of1 in C , C is conveniently
represented as a partially specified set (cf., e.g., sets2 in Example 2).

3.1 Logical variables

A logical variableis an instance of the classLvar , created by the statement

Lvar VarName = new Lvar(VarNameExt, VarValue);

whereVarName is the variable name,VarNameExt is an optional external name of
the variable, andVarValue is an optionalLvar value associated with the variable.

The external nameis a string value which can be useful when printing the vari-
able and the possible constraints involving it (if omitted,a default name of the form
"Lvar n" , wheren is a unique integer, is assigned to the variable automatically).
Lvar are not typed. AnLvar valuecan be either a primitive type value, or any library
or user defined class object (provided it supplies a methodequals for testing equal-
ity between two instances of the class itself). In particular, anLvar value can be an
instance ofLvar , Lst , or Set .

A logical variable which has noLvar value associated with it, or whoseLvar
value is an uninitialized logical variable (or an uninitialized list or set), is said to be
uninitialized(or anunknown). Otherwise, the logical variable isinitialized. Lvar val-
ues other than uninitialized logical variables (or lists orsets) are saidknown values.
Uninitialized logical variables will possibly assume a known value (i.e., they become
initialized) during the computation, in consequence of some constraints involving them.

3.2 List and set definitions

A list is a finite (possibly empty) sequence of arbitraryLvar values (i.e., theelements
of the list). In JSetL a list is an instance of the classLst , created by the statement

Lst LstName = new Lst(LstNameExt, LstElemValues);

whereLstName is the list name,LstNameExt is an optionalexternal nameof the list,
andVarElemValues is an optional array ofLvar valuesc1, . . . , cn of type t , which
constitute the elements of the list. The constantLst.empty is used to denote the
empty list. No typing information on elements of a list are provided.

A list can be either initialized or uninitialized. An uninitialized list is like a logical
variable, but constrained to be (possibly) initialized by list objects only.

A set is a finite (possibly empty) collection of arbitraryLvar values (i.e., theele-
mentsof the set). In JSetL a set is an instance of the classSet , created by the statement

Set SetName = new Set(SetNameExt, SetElemValues);

whereSetName, SetNameExt, andSetElemValues have the same meaning than in
lists. The constantSet.empty is used to denote theempty set. Like a list, a set can
be either initialized or uninitialized, and no typing information are associated with the
elements of a set. Differences between lists and sets becomeevident when operating on
them through list/set operations (e.g., list/set unification—see Sect. 4).

233

Example 1 Lvar , Lst , andSet definitions

Lvar x = new Lvar(); // uninitialized l. var.
Lvar y = new Lvar("y",’a’); // initialized l. var.

// (value’a’),
// with ext’l name"y"

Lvar t = new Lvar(x); // uninitialized l. var.
// (same as variablex)

Lst l = new Lst("l"); // uninitialized list,
// with ext’l name"l"

int [] s elems = {2,4,8,3 };
Set s = new Set("s",s elems); // initialized set

// (value{2,4,8,3 }),
// with ext’l name"s"

Hereafter, we will often make use of an abstract notation—which closely resembles
that of Prolog—to write lists in a more convenient way. Specifically, [e1, e2, . . . , en] is
used to denote the list containingn elementse1, e2, . . . , en , while [] is used to denote
the empty list. Moreover,[e1, e2, . . . , en | R], whereR is a list, is used to denote a
list containing then elementse1, e2, . . . , en , plus elements inR. In particular, ifR is
uninitialized,[e1, e2, . . . , en |R] represents an “unbounded” list, with elementse1, . . . ,
en and an unknown partR. Similar abstract notation will be introduced also to represent
sets (with square brackets replaced by curly brackets).

Elements of a list or of a set can be also logical variables (orlists or sets), possibly
uninitialized. For example, the following declarations

Lvar x = new Lvar();
Object[] pl elems = {new Integer(1),x };
Lst pl = new Lst(pl elems);

create the listpl with value [1,x] , wherex is an uninitialized logical variable. A
list (resp., set) that contains some elements which are uninitialized logical variables
(or lists, or sets) is said apartially specified list (set). Note that in a partially specified
set the cardinality is not completely determined. For example, the partially specified
set{1,x } has cardinality1 or 2 depending on whetherx will get value1 or different
from 1, respectively (actually, each partially specified set/list denotes a possibly infinite
collection of different sets/lists, that is all sets/listswhich can be obtained by assigning
admissible values to the uninitialized variables).

3.3 List and set constructor expressions

A list (resp., set) can be also obtained as the result of evaluating a list (resp., set) con-
structor expression.

Let e be anLvar expression(i.e. an expression returning aLvar value),l andm
be list expressions(i.e., expressions returning a list object or a logical variable whose
value is a list object), andx be an uninstantiated logical variable. Alist constructoris
an expression of one of the forms:

234

(i) l.ins1(e) (head element insertion)
(ii) l.insn(e) (tail element insertion)
(iii) l.ext1(x) (head element removal)
(iv) l.extn(x) (tail element removal)

Expressions(i) and(ii) denote the list obtained by addingval (e) as the first and the
last element of the listl , respectively, whereas expressions(iii) and(iv) denote the list
obtained by removing froml the first and the last element, respectively. Evaluation of
expressions(iii) and(iv) also causes the value of the removed element to become the
value ofx . 1 It is important to notice that these methods do not modify thelist on which
they are invoked: rather they build and return a new list obtained by adding/removing
the elements to/from the input list (the same will hold for sets, too).

Constructor expressions for sets are simpler than those forlists. In fact, in lists we
can distinguish between the first (thehead) and the last (thetail) element of a list,
while in sets the order of elements is immaterial. Moreover,only the element insertion
method is provided since element extraction may involve a nondeterministic selection
of the element to be extracted that is better handled using set constraints (see Section
4). Lete be anLvar expression ands be aset expression(i.e., an expression returning
a set object or a logical variable whose value is a set object). A set constructoris an
expression of the form:

s.ins(e) (element insertion)

which denotes the set obtained by addingval (e) to s (i.e.,s ∪ {val(e)}).
Set/List insertion and extraction methods can be concatenated (left associative). In

fact these methods always return aSet /Lst object, and the returned object can be used
as the invocation object as well.

Using the insertion methods it is possible to buildunboundedpartially specified
sets/lists, that is data structures with a certain number of(either known or unknown)
elementse1, ..., en , and an unknown “rest” part, represented by an uninitialized set/list
r (i.e., using the abstract notation,{e1, . . . , en | r} or [e1, . . . , en | r] for sets and lists,
respectively).

Example 2 Set/List element insertion and removal

Lst nil = Lst.empty; // the empty list
Lst l1 = nil.ins1(3+2).ins1(x);

// the p.s. list [x,5]
// (x uninitialized var.)

Lst l2 = l1.ext1(y).insn(y);
// the p.s. list [5,x]
// (y uninitialized var.)

Set s1 = Set.empty.ins(1).ins(’a’);
// the set{’a’,1}

Set r = new Set(); // an uninitialized set
Set s2 = r.ins(1); // the unbounded set{1 | r}

1 Extraction methods for lists require that the invocation list l is initialized and thatx is
not initialized. If one of these conditions is not respectedan exception is raised (namely,
NotInitVarException and InitLvarException , respectively). Moreover, ifl is
the empty list, aEmptyLstException exception is raised.

235

Note thats2 in the above example is a partially specified set containing one ele-
ment,1, and an unknown partr ; in this case, the cardinality of the denoted set has no
upper bound (the lower being1).

Special forms of the insertion and extraction methods are provided to simplify their
usage. In particular, the methodins1All(a) , applied to a listl , wherea is an array
of elements of a typet, returns a list obtained froml by adding all elements ofa as
the head elements ofl , respecting the order they have ina. Similarly, insAll(a) ,
applied to a sets , is used to insert more than one element at a time intos . In addition,
an alternative form is provided for specifying the value fora set or list object. When
creating the object it is possible to specify the limitsl andu of an interval[l , u] of
integers: the elements of the interval will be the elements of the set/list (ifu < l the
set/list is empty).

A number of utility methods are also provided by classesLvar , Lst , andSet .
These methods are used, for example, to print a set/list object, to know whether a logical
variable is initialized or not, to get the external name associated with aLvar , Lst , or
Set object, and so on.

Logical variables, sets, and lists are used mainly in conjunction with constraints.
Constraints are addressed in more details in the next section.

4 Programming with (Set) Constraints

Basic set-theoretical operations, as well as equalities and inequalities, are dealt with as
constraintsin JSetL. The evaluation of expressions containing such operations is carried
on in the context of the current collection of active constraintsC (the globalconstraint
store) using domain specific constraint solvers. Those parts of these expressions, usually
involving one or more uninitialized variables, which cannot be completely solved are
added to the constraint store and will be used to narrow the set of possible values that
can be assigned to the uninitialized variables.

4.1 JSetL constraints

The JSetLconstraint domainis theSET domain defined in [6], extended with a few
new constraints over lists and integers. Anatomic constraintof this domain is an ex-
pression of one of the forms:

– e1.op (e2)
– e1.op (e2, e3)

whereop is one of a collection of predefined methods provided by classesLvar , Lst
andSet , ande1, e2 ande3 are expressions whose type depends onop. More precisely,
let l , r beLvar expressions,s , s1, s2, s3 set expressions,l1, l2 list expressions, andi1, i2
integer expressions. JSetL provides the following atomic constraints:
l .eq (r) (equality) for comparingLvar values;
l .in (s) (membership),s1.subset (s2) (subset),s1.union (s2, s3) (union, i.e.val (s1) =
val(s2) ∪ val(s3))), s1.inters (s2, s3) (intersection), and a few other basic set-theoretic

236

operations, for dealing with sets;
i1.le (i2) (≤), i1.ge (i2) (≥), . . . , for comparing integer values.
Moreover, for most of them, also their negative counterparts are provided:l .neq (r)
(inequality),l .nin (s) (not membership),s1.nsubset (s2) (not subset), and so on.

If an expressionei of an atomic constrainte1.op (e2, e3) (or e1.op (e2)) is evaluated
to a value of the wrong type, a suitable exception is raised bythe constraint solver.

A constraintis either an atomic constraint or (recursively) the conjunction of two
or more atomic constraintsc1, c2,. . . ,cn :

– c1.and (c2)and (cn)

Example 3 JSetL constraints

Let x , y , z be logical variables andr , s , andt be sets.

r.eq(s); // equality between sets
t.union(r,s); // t = r ∪ s
x.eq(y).and(x.eq(3)).and(y.neq(z))

// x = y ∧ x = 3 ∧ y 6= z

Note that solving an equality constraint implies the ability to solve aset unification
problem (cf., e.g., [7]). Set unification of two (possibly partially specified) setss andr

means finding an assignment of values to uninitialized variables occurring in them (if
any), such thats andr become equal in the underlying set theory. Intuitively, in any
reasonable set theory, two sets are equal if they have the same elements, disregarding
their order and possible repetitions. Thus, for instance, the set unification problem

{x , y} = {1, 2}
wherex andy are uninitialized logical variables, admits two solutions: assign1 to x

and2 to y, or assign2 to x and1 to y.

4.2 Constraint solving

The approach adopted for constraint solving in JSetL is the one developed for
CLP(SET) [6]. Logically, the constraint store is a conjunction of atomic formulae built
using basic set-theoretic operators, along with equality and inequalitie. Satisfiability
is checked in a set-theoretic domain, using a suitable constraint solver which tries to
reduce any conjunction of atomic constraints to a simplifiedform—thesolved form—
which is guaranteed to be satisfiable. The success of this reduction process allows one
to conclude the satisfiability of the original collection ofconstraints. Conversely, the
detection of a failure (logically, the reduction tofalse) implies the unsatisfiability of
the original constraints. Solved form constraints are leftin the current constraint store
and passed ahead to the new state. A successful computation,therefore, may terminate
with a not empty collection of solved form constraints in thefinal constraint store.

The JSetL constraint solver basically implements in Java the constraint solver of
CLP(SET), extended with simple constraints over integers. Suitable restrictions, how-
ever, are imposed on the latter so that they can be always eliminated. Namely, expres-
sionse1 and e2 in e1.op (e2), whereop is an integer comparison operator, can not

237

contain any uninstantiated variable when they are evaluated; otherwise an exception is
raised.2 Therefore, since the constraint solver of CLP(SET) is proved to be complete
(as well as correct and terminating) [6], the same holds alsofor the JSetL constraint
solver.

To add a constraintC to the constraint store, theadd method of theSolver class
can be called as follows:

Solver.add(C)

The order in which constraints are added to the constraint store is completely im-
material. After constraints have been added to the store, one can invoke their resolution
by calling thesolve method:

Solver.solve()

The solve method nondeterministically searches for a solution that satisfies all
constraints introduced in the constraint store. If there isno solution aFailure excep-
tion is generated. We say that the invocation of a method, calling (directly or indirectly)
thesolve method, terminates withfailure if its execution causes theFailure excep-
tion to be raised; otherwise we say that it terminates withsuccess. The default action
for this exception is the immediate termination of the current thread. The exception,
however, can be caught by the program and dealt with as preferred.

To find a solution, the constraint solver tries to reduce the atomic constraints in the
constraint store to a simplified form - called thesolved form(see [6]). This reduction is
nondeterministic. Nondeterminism is handled through choice points and backtracking.
Once the constraint reduction process detects a failure, the computation backtracks to
the most recently created choice point (chronological backtracking). If no choice point
is left open the whole reduction process fails (i.e., theFailure exception is gener-
ated).

Example 4 Constraint solving

Let s be the set{x,y,z }, wherex , y , z are uninitialized logical variables, andr be
the set{1,2,3 }.

Solver.add(r.eq(s)); // set unificationr = s
Solver.add(x.neq(1)); // x 6= 1
Solver.solve(); // calling the constraint solver
x.output();

x.output() prints the (external) name of the variablex followed by its value (if any;
otherwise, followed by’ ’). Therefore the output generated by this code fragment is:

x = 2

2 Actually, the new version of the CLP(SET) solver [4], which integrates theSET solver with
an efficient solver overfinite domains(FD), is able to deal with basic operations over integers
as constraints with almost no restriction on the instantiation of expressions that can occur in
them. Following the same approach, and extending the JSetL constraint solver accordingly, it
would allow us to deal with arithmetic constraints with no restrictions also in JSetL.

238

In the above example, the value forx is computed through backtracking. Solving
the set unification problem{x, y, z} = {1, 2, 3} nondeterministically returns one of the
six different solutions:

x = 1, y = 2, z = 3 ,
x = 1, y = 3, z = 2 ,
x = 2, y = 3, z = 1 , . . .

and so on. Assuming the first computed value forx is 1, then the other constraint,
x.neq(1) , turns out to be not satisfied. Thus, backtracking forces thesolver to find
another solution forx , namelyx = 2 . In this case, the conjunction of the two given
constraints is satisfied, and the invocation of thesolve method terminates success-
fully. If later on a new constraint, e.g.,[x] 6= [2] , is added to the constraint store, and
the constraint solver is called again:

Solver.add(Lst.empty.ins1(x).neq(Lst.empty.ins1(2)));
// [x] 6= [2]

Solver.solve();
x.output();

the choice points left open by the previous call to the solverare still open and they are
explored by the new invocation. The output generated at the end of the computation of
this new fragment of code is therefore:

x = 3

Note that every time thesolve method is invoked it does not restart solving the
constraint from the beginning but it restart from the point reached by the last invocation
to solve .

At the end of the computation the constraint store may contain solved form con-
straints. To print these constraints, other than equality constraints, one can use the static
methodshowStore() of classSolver (actually this method allows to visualize the
content of the constraint store at any moment during the computation).

JSetL provides also a more convenient way to introduce more than one constraint
at a time, through theforall method. Letx be an uninitialized variable,S a set
expression which is evaluated to a bounded set,C a constraint containingx , andCs the
constraint obtained fromC by replacing all occurrences ofx with elements of S . The
statement

Solver.forall(x, S , C)

adds the constraintCs to the constraint store, for each elements of S . Logically,
forall(x, S , C) is the so-called Restricted Universal Quantifier (cf., e.g., [6]):
∀x ((x ∈ S)→ C) (see the sample program in Section 2 for a simple use offorall).

It is common also to allowlocal variablesy1, . . . , yn in C , which are created as
new for each element of the set (logically,∀x ((x ∈ S) → ∃y1, . . . , yn(C)) that is
y1, . . . , yn are existentially quantified variables). For this purpose,JSetL provides also
the method

Solver.forall(x, S , Y , C)

wherex , S , andC are the same as in the simplerforall method, whileY is an array
of all the local uninitialized logical variablesy1, . . . , yn occurring inC (see Example 6).

239

4.3 Programming with constraints

Let us see how the solver works on a number of simple examples,possibly involving
also constraints in the computed result.

Example 5 In difference

Check whether an elementx belongs to the difference between two sets,s1 and s2
(i.e.,x ∈ s1\s2) .

public static void in difference(Lvar x, Set s1, Set s2)
throws Failure

{
Solver.add(x.in(s1));
Solver.add(x.nin(s2));
Solver.solve();
}

If the following code fragment is executed (for instance, inthemain method)

in difference(x,s,r);
x.output();
Solver.showStore();

and s and r are the sets{1,2 } and {1,3 }, respectively, andx is an uninitialized
variable, the output generated is:

x = 2
Store: empty

Conversely, ifs is an uninitialized set, then executing the same program fragment
as above, will produce the following output

x = unknown
s = {x | Set 1}
Store: x.neq(1) x.neq(3)

which is read as:s can be any set containing the elementx and x must be different
from 1 and3.

The ability to solve constraints disregarding the fact logical variables occurring in
them are initialized or not allows methods involving constraints to be used in a quite
flexible way, e.g., using the same method both for testing andcomputing solutions This
flexibility strongly contributes to support a declarative programming style.

Example 6 All pairs

Check whether all elements of a sets are pairs, i.e., they have the form[x1,x2] , for
anyx1 andx2 .

public static void all pairs(Set s) throws Failure
{
Lvar x1 = new Lvar();

240

Lvar x2 = new Lvar();
Lvar[] Y = {x1,x2 };
Lvar x = new Lvar();
Lst pair = Lst.empty.ins1(x2).ins1(x1);
Solver.forall(x,s,Y,x.eq(pair));
Solver.solve();
return;
}

Let sample set be the set{[1,3],[1,2],[2,3] }. The following fragment of
code tests whethersample set is composed only of pairs and prints a message
‘‘All pairs’’ or ‘‘Not all pairs’’ depending on the result of the test.

boolean res = true;
try {

all pairs(sample set);
}

catch(Failure e)
{res = false; }

if (res) System.out.print("All pairs");
else System.out.print("Not all pairs");

Example 6 shows also how a statement, namelyall pairs(sample set) , can
be used, in a sense, as a condition. In fact, if execution of the statement fails (i.e., not
all elements in the given set are pairs), then an exceptionFailure is raised and the
associated exception handler executed. The latter can easily set a boolean variable to
be used in the nextif statement. Thus, if the statement terminates with success then a
true value is returned (inres); otherwise, the statement terminates with failure and
a false value is returned. This is analogous to the use of statementsas expressions
found in some languages, such asAlma-0 [1] and SINGLETON [15].

Constraints and other JSetL facilities can be used in conjunction with the usual
control structures of Java. This situation is illustrated by the following example.

Example 7 Symmetrical list

Check whether a listl is symmetrical or not.

public static boolean symmetrical(Lst l)
throws Failure

{
try {

while(l.size()>1)
{
Lvar z1 = new Lvar();
Lvar z2 = new Lvar();
Lst r = l.ext1(z1).extn(z2);

// extract the first and last element ofl
Solver.add(z1.eq(z2));

// the first and the last elem’s
// must be equal

241

Solver.solve();
l = r;

// continue with the rest ofl
}

return true ;
}

catch(Failure e)
{
return false;
}

}

If, for example, l is [’r’,’a’,’d’,’a’,’r’] the value returned by
symmetrical is true. List l can contain also some unknown values. For exam-
ple, with l = [x,1,3,y,2] , x and y uninitialized variables, invocation of the
symmetrical method returnstrue and as a side-effect it initializes variablesx andy
to 2 and1, respectively. Note that within thewhile loop we use an assignment between
two logical variables,l = r : this forcesl at the next iteration to be replaced by the
new (shorter) listr .

5 Nondeterminism

A computation in JSetL can be nondeterministic, though nondeterminism in JSetL is
confined to constraint solving. Precisely, like in SINGLETON, nondeterminism is mainly
supported by set operations. As a matter of fact, the notion of nondeterminism fits into
that of set very naturally. Set unification and many other setoperations are inherently
and naturally nondeterministic. For example, the evaluation of x ∈ {1, 2, 3} with x an
uninitialized variable, nondeterministically returns one amongx = 1, x = 2, x = 3.
Since the semantics of set operations is usually well understood and quite “intuitive”,
making nondeterministic programming the same as programming with sets can con-
tribute to make the (not trivial) notion of nondeterminism easier to understand and to
use.

Nondeterminism is another key feature of a programming language to support
declarative programming. A simple way to exploit nondeterminism in JSetL is through
the use of theSetof method. This method allows one to explore the whole search
space of a nondeterministic computation and to collect intoa set all the computed solu-
tions for a specified logical variablex . Then the collected set can be processed, e.g., by
iterating over all its elements using theforall method.

Example 8 All solutions

Compute the set of all subsets (i.e., the powerset) of a givensets .

public static Set powerset(Set s) throws Failure
{
Set r = new Set();
Solver.add(r.subset(s));
return Solver.setof(r);
}

242

If s is the set{’a’,’b’ }, the set returned bypowerset is {{}, {’a’ }, {’b’ },
{’a’,’b’ }}.

As a more comprehensive example, using nondeterminism and set constraints, we
show a possible JSetL solution to the well-known combinatorial problem of the coloring
of a map.

Example 9 Coloring of a map

Given a map ofn regionsr1,...,rn and a set ofm colorsc1,...cm find an assignment of
colors to regions such that neighboring regions have different colors.

The regions are represented by a set ofn uninitialized logical variables and the col-
ors by a set ofm constant values (e.g.,{"red","blue" }). The map is modeled by an
undirected graph and it is represented as a set whose elements are sets containing two
neighboring regions. At the end of the computation eachLvar representing a region
will be initialized with one of the given color.

public static void coloring(Set regions,
Set map,
Set colors)

throws Failure
{
Lvar x = new Lvar();
Set single = Set.empty.ins(x);
Solver.add(regions.eq(colors));
Solver.forall(x,colors,(single.nin(map));
Solver.solve();
return;
}

The solution uses a pure “generate & test” approach. Theregions = colors con-
straint allows us to find a valuable assignment of colors to regions. Invocation of the
forall method allows us to test whether the constraint{x} 6∈ map holds for all x
belonging tocolors . If it holds, it means that for no pair{ri , rj } in map, ri andrj
have got the same color.

If coloring is called with regions = {r1,r2,r3 }, r1 , r2 , r3 uninitial-
ized logical variables,map = {{r1,r2 }, {r2,r3 }}, and colors = {"red",
"blue" }, the invocation terminates with success, andr1 , r2 , r3 are initialized to
"red" , "blue" , and"red" , respectively (actually, also the other solution which ini-
tializesr1 , r2 , r3 to "blue" , "red" , and"blue" , respectively, can be computed
through backtracking, if the first computed solution turns out to cause a failure).

Note that the set of colors can be also partially specified. For example, ifcolors =
{c1,"blue" }, with c1 an uninitialized variable, executingcoloring will generate
the constraint:
r1 = Lvar 1, r2 = blue , r3 = Lvar 1, Lvar 1.neq(blue) .

243

6 Defining new constraints

Nondeterminism in JSetL is confined to constraint solving. One consequence of this is
that backtracking allows the computation to go back to the nearest open choice point
within the constraint solver, but it does not allow to “re-execute” user program code.
For example, let us consider the following program fragment, where we assume thats
is the set{0,1 }, andc1, c2 are two constraints:

Solver.add(x.in(s));
Solver.solve();
if (x.value().equals(new Integer(0)) Solver.add(c1);
else Solver.add(c2);

If, when evaluating theif condition, the value of the logical variablex is 0 then the
constraintc1 is added to the constraint store. If, subsequently, a failure is detected,
backtracking will allow to consider a different value forx , namely1, but theif condition
is no longer evaluated. The constraint solver will examine the constraint store again,
with the new value forx but still with constraintc1 added to it.

Basically the problem is caused by the fact that we cannot guarantee a tight inte-
gration between the constraint solver (which is defined in a library) and the primitive
constructs of the language. This is probably the main difference between what we called
the “library” approach and the approach based on the definition of a new language (or
the extension of an existing one). As a matter of fact the problem illustrated by the above
program fragment is easily programmed in a language such as SINGLETON where non-
determinism and logic variables are embedded in the language.

However, JSetL provides a solution to overcome this difficulty. The solution is based
on the possibility to introduce user-defined new constraints. Whenever a method which
the user wants to define requires some nondeterministic action embedded in a non-
trivial control structure, one can define the method as a new constraint, so that its exe-
cution is completely performed in the context of constraintsolving.

User-defined constraints are defined as usual Java methods except that:(i) they are
all declared within a class namedNewConstraints ; (ii) they can use the JSetL
facilities for handling nondeterminism. To make the use of these facilities simpler, we
assume a special construct is provided (similar to that found for instance in Alma-0 [1]):
eitherS1 orelseS2 . . .orelseSn, whereS1,. . . ,Sn are Java statements. The logical mean-
ing of theeither-orelseconstruct is the disjunctionS1∨,. . . ,∨ Sn, while its computa-
tional interpretation is that of exploring, through backtracking, all possible alternatives
S1,. . . ,Sn, starting fromS1. Actually this construct is easily replaced by usual Java code
endowed with JSetL facilities for handling nondeterminism(see Appendix A for an
example). This replacement can be performed automaticallythrough a straightforward
preprocessingphase that takes the extended Java code of theNewConstraints class
as its input and it generates the corresponding standard Java code.

Let us see how the user can define a new constraint using a simple example: a
fully nondeterministic recursive definition of the classical list concatenation operation
(concat). The solution, however, can be easily generalized to othercases.

class NewConstraints

244

{
public static void concat(Lst l1, Lst l2, Lst l3)
throws Failure

{
either

{
Solver.add(l1.eq(Lst.empty));
Solver.add(l2.eq(l3));
}

orelse
{
Lvar x = new Lvar();
Lst l1new = new Lst();
Lst l3new = new Lst();
Solver.add(l1.eq(l1new.ins1(x)));

// l1 = [x | l1new]
Solver.add(l3.eq(l3new.ins1(x)));

// l3 = [x | l3new]
Solver.add(concat(l1new,l2,l3new));

// concat(l1new,l2,l3new)
}

return ;
}

}

The methodconcat takes three lists as its parameters:l1 , l2 andl3 . l3 is the
concatenation ofl1 andl2 . concat can be used both to check if a given concatena-
tion of lists holds and to build any of the three lists, given any of the other two (as usual,
for instance, in Prolog). Such flexibility is obtained by using unification (instead of stan-
dard assignment) and nondeterminism (instead of a deterministic if statement). Nonde-
terminism is implemented through theeither-orelseconstruct: the first alternative states
that whenl1 is the empty list,l2 andl3 must be equal; the second alternative deals
with the case in which the first element ofl1 is x so thatl3 is obtained by inserting
x as the head element of the listl3new which is obtained (recursively) by concate-
nating the rest ofl1 (i.e., l1new) with l2 . The actual Java code that implements the
new constraintconcat (generated through preprocessing of theNewConstraints
class) is shown in Appendix A.

Execution of the statement

Solver.add(NewConstraints.concat(l1,l2,l3))

causes the user-defined constraintconcat to be added to the current constraint store.
If, for instance,l1 is [1,2,3] , l2 is [4,5] , andl3 is an uninitialized list, a subse-
quent call toSolver.solve() will set l3 equal to[1,2,3,4,5] .

As an example of the possible different usages ofconcat we show a completely
declarative version of a method for checking the sublist relation.

Example 10 Sublist relation

Check whether a listp is a sublist of a lists and return the positionk wherep starts.

245

public static void prefix(Lst l1, Lst l2)
throws Failure

{
Lst l = new Lst();
Solver.add(NewConstraints.concat(l1,l,l2));
Solver.solve();
return ;
}

public static int sublist(Lst p, Lst s)
throws Failure

{
Lst A = new Lst();
Lst B = new Lst();
prefix(A,s);
Solver.add(NewConstraints.concat(A,p,B));
prefix(B,s);
Solver.solve();
return A.size()+1;
}

whereA.size() yields the number of elements of the list denoted byA. The first
invocation of theprefix method insublist allows us to compute (nondeterminis-
tically) a possible prefixA of s , while the second invocation of theprefix method is
used to check whether the computed sublistB is a prefix ofs . If this is not the case, a
different value forA is attempted next.

As an example, ifs is the list[1,1,3,1,4,5,1,2,1,1,1,4] andp is the list
[1,2,1] the invocation ofsublist will return 7 as its result.

7 Conclusions and future work

We have presented the main features of the JSetL library and we have shown how they
can be used to write programs that exhibit a quite good declarative reading, while main-
taining all the features of conventional Java programs. In particular we have described
the (set) constraint handling facilities supported by our library and we have shown how
constraint solving can be accomplished, and how it interacts with the usual notion of
program computation. Furthermore we have shown how to exploit nondeterminism,
possibly by introducing new used-defined constraints. JSetL is fully implemented in
Java and is available at URLwww.math.unipr.it/ ∼gianfr/JSetL .

All features provided by JSetL are present also in the CLP(SET) language [6], but
embedded in a CLP framework. An attempt to “export” these features outside CLP is
represented by the definition of the SINGLETON language [15], a declarative language
that combines most of the features considered in this paper with “traditional” features
of imperative programming languages, such as the iterativecontrol structures and the
block structure of programs. SINGLETON, however, is a completely new language, with
its own syntax and its own semantics. A possible side-effectof the current work on
JSetL is to allow us to compare the approach followed in SINGLETON with the library

246

based approach followed in JSetL, in order to evaluate the gain in the expressive power
related to the effort needed to develop the new facilities and the easiness to use them.

As a future work the constraint solving capabilities of JSetL could be strongly en-
hanced by enlarging the constraint domain from that of sets to that offinite domains.
Following [4], this enhancement could be obtained by integrating an existing constraint
solver for finite domains, possibly written in Java, with theJSetL constraint solver over
sets. As shown in [4] this would allow us to have, in many cases, the efficiency of the
finite domain solvers, while maintaining the expressive power and flexibility of the set
constraint solvers (which in turn is inherited from CLP(SET)).

On a different side, another concrete improvement could be obtained by using flex-
ible preprocessing tools for the Java language that would allow us to develop suitable
syntax extensions that would make it simpler and more natural using the JSetL facilities.

8 Acknowledgments

The work is partially supported by MIUR projectsAutomatic Aggregate—and number—
Reasoning for ComputingandCoVer—Constraint-based Verification of Reactive Sys-
tems.

247

Bibliography

[1] K.R. Apt, J. Brunekreef, V. Partington, and A. Schaerf.Alma-0: An imperative
language that supports declarative programming.ACM TOPLAS, 20(5), 1014–
1066, 1998.

[2] A.Chun. Constraint programming in Java with JSolver. InProc. Practical Appli-
cations of Constraint Logic Programming, PACLP99, 1999.

[3] A.Courtney. Frappé: Functional reactive programmingin Java. InPractical As-
pects of Declarative Languages, PADL 2001, LNCS, Vol. 1990, Springer-Verlag,
29–44, 2001.

[4] A. Dal Palù, A. Dovier, E. Pontelli, and G. Rossi. Integrating Finite Domain
Constraints and CLP with Sets. InPPDP’03 — Proc. of the Fifth ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, ACM Press,
219–229, 2003.

[5] E.Denti, A.Omicini, and A.Ricci. tu Prolog: a light-weight Prolog for internet
applications and infrastructures. InPractical Aspects of Declarative Languages,
PADL 2001, LNCS, Vol. 1990, Springer-Verlag, 184–198, 2001.

[6] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic program-
ming. ACM TOPLAS, 22(5), 861–931, 2000.

[7] A. Dovier, E. Pontelli, and G. Rossi. Set unification. TR-CS-001/2001, Dept. of
Computer Science, New Mexico State University, USA, January 2001 (available
at www.cs.nmsu.edu/TechReports).

[8] M.Dincbas, P.Van Hentenryck, H.Simonis, et al. The constraint logic program-
ming CHIP. InProc. of the 2nd Int’l Conf. On Fifth Generation Computer Systems,
683-702, 1988.

[9] ECLiPSe, User Manual. Tech. Rept., Imperial College, London. August 1999.
Available atwww.icparc.ic.ac.uk/eclipse .

[10] G.Falkman, O.Torgersson. Enhancing Usefulness of Declarative Programming
Frameworks through Complete Integration. InProc. of the 12th Int. Workshop
on Logic Programming Environments, July 2002 (available athttp://xxx.
lanl.gov/abs/cs.SE/0207054).

[11] E.Hyyonen, S.DePascale, and A.Lehtola. Interval constraint satisfaction tool
INC++. In Proc. of the 5th ICTAI, IEEE Press, 1993.

[12] ILOG Optimisation Suite - White Paper. Available at
www.ilog.com/products/optimisation/tech/optimisatio n/
whitepaper.pdf .

[13] G.Smolka. The Oz programming model. InCurrent Trends in Computer Science,
J. van Leeuwen, Ed., LNCS, vol. 1000, Springer-Verlag, 1995.

[14] J.-F.Puget and M.Leconte. Beyond the Glass Box: Constraints as Objects. InProc.
of the 1995 Int’l Symposium on Logic Programming, MIT press, pp. 513-527.

[15] G.Rossi. Set-based Nondeterministic Declarative Programming in SINGLETON.
In 11th Int.l Workshop on Functional and (constraint) Logic Programming, Elec-
tronic Notes in Theoretical Computer Science, Vol. 76, Elsevier Science B. V., 17
pages, 2002.

248

[16] I.Shvetsov, V.Telerman, and D.Ushakov. NeMo+: Object-oriented constraint pro-
gramming environment based on subdefinite models. InArtificial Intelligence and
Symbolic Mathematical Computations(G.Smolka, ed.), LNCS 1330, Springer-
Verlag, 534-548.

[17] Neng-Fa Zhou. DJ: Declarative Java, Version 0.5, User’s manual. Kyushu In-
stitute of Tecnology, 1999. Available atwww.cad.mse.kyutech.ac.jp/
people/zhou/dj.htlm .

[18] Neng-Fa Zhou. Building Java Applets by using DJ—a Java Based Constraint Lan-
guage. Available atwww.sci.brooklyn.cuny.edu/ ∼zhou .

A Implementing user-defined constraints

In this section we present the actual code used to implement the user-defined constraint
concat .

class NewConstraints
{
public static StoreElem concat(Lst l1, Lst l2, Lst l3)

{
StoreElem s = new StoreElem(n,l1,l2,l3);
return s;
}

protected static voidusercode(int c, StoreElem s)
throws Failure

{
switch(c)

{ ...
case n: concat(s); break;
. . .}

return s;
}

public static void concat(StoreElem s)
throws Failure

{
Lst l1 = (Lst)s.arg1;
Lst l2 = (Lst)s.arg2;
Lst l3 =(Lst)s.arg3;
switch(s.caseControl)

{
case 0:

add ChoicePoint(s);
add(l1.eq(Lst.empty));
add(l2.eq(l3));
return ;

case 1:

249

Lvar x = new Lvar();
Lst l1new = new Lst();
Lst l3new = new Lst();
add(l1.eq(l1new.ins1(x)));

// l1 = [x | l1new]
add(l3.eq(l3new.ins1(x)));

// l3 = [x | l3new]
add(concat(l1new,l2,l3new));

// concat(l1new,l2,l3new)
return ;

}
}

}

The first definition of theconcat method creates a new instance of the class
StoreElem which is used to store the new constraint within the constraint store.
The instance contains all parameters for theconcat method, along with an inte-
ger n which will be used by the solver to uniquely identify the new constraint. The
user code method is used to associate each internal code with the corresponding
method that implements the user-defined constraint (namely, the second definition of
theconcat method in this example). The control expression of theswitch statement
is thecaseControl attribute of the constraint stores associated withconcat (de-
fault value: 0). Eachcase block, but the last one, creates a choice point and adds it to
the stack of the alternatives by executing the statementadd ChoicePoint(s) ; then
the remaining code of thecase block adds the constraints necessary to compute one
of the possible solutions.

250

SML2Java: A Source to Source Translator

Justin Koser, Haakon Larsen, and Jeffrey A. Vaughan

Cornell University

Abstract. Java code is unsafe in several respects. Explicit null references and
object downcasting can cause unexpected runtime errors. Java also lacks pow-
erful language features such as pattern matching and first-class functions. How-
ever, due to its widespread use, cross-platform compatibility, and comprehensive
library support, Java remains a popular language.
This paper discusses SML2Java, a source to source translator. SML2Java oper-
ates on type checked SML code and, to the greatest extent possible, produces
functionally equivalent Java source. SML2Java allows programmers to combine
existing SML code and Java applications.
While direct translation of SML primitive types to Java primitive types is not pos-
sible, the Java class system provides a powerful framework for emulating SML
value semantics. Function translations are based on a substantial similarity be-
tween Java’s first-class objects and SML’s first-class functions.

1 Introduction

SML2Java is a source-to-source translator from Standard ML(SML), a statically typed
functional language [8], to Java, an object-oriented imperative language. A successful
translator must emulate distinctive features of one language in the other. For instance,
SML’s first-class functions are mapped to Java’s first-classobjects, and an SML let ex-
pression could conceivably be translated to a Java interface containing an ’in’ function,
where every let expression in SML would produce an anonymousinstantiation of the
let interface in Java. Similarly, many other functional features of SML are translated
to take advantage of Java’s object-oriented style. Becausefunctional features such as
higher-order functions must ultimately be implemented using first-class constructs, we
believe one can only achieve a clean design by taking advantage of the strengths of the
target language.

SML2Java was inspired by problems encountered teaching functional programming
to students familiar with the imperative, object-orientedparadigm. It was developed for
possible use as a teaching tool for Cornell’s CS 312, a coursein functional programming
and data structures. For the translator to be a successful educational tool, the translated
code must be intuitive for a student with Java experience.

On a broader level, we wish to show how functional concepts can be mapped to
object-oriented imperative concepts through a thorough understanding of each model.
In this regard, it becomes important not to force functionalconcepts upon an imperative
language, but rather to translate these functional concepts to their imperative equiva-
lents.

251

2 Translation

This section discusses the choices we made in our translation of SML to Java. Where
pertinent, we will also discuss the benefits and drawbacks ofour design decisions.

2.1 Primitives

SML primitive types, such asint and string, are translated to Java classes. The
foregoing becomeInteger2andString2, respectively. Ideally, SML primitives would
translate to their built-in Java equivalents (e.g.int → java.lang.Integer), but these
classes (e.g.java.lang.Integer) do not support operations such as integer addition
or string concatenation [10]. We do not map directly toint and string because Java
primitives are not derivatives ofObject, cannot be used with standard Java collections,
and are not compatible with our function and record translations. The latter will be
shown in sections 2.2 and 2.4. Our classes, which are based onJava.util.*, include
necessary basic operators and fit well with function and record translation. While Hicks
[6] addresses differences between the SML and Java type systems, he does not discuss
interoperability. Blume [4] treats the related problem of translating C types to SML.

Figure 1 demonstrates a simple translation. The astute reader will notice several
superfluous typecasts. Some translated expressions formally return Object. However,
because SML code is typesafe, we can safely downcast the results of these expressions.
The current version of SML2Java is overly conservative, andinserts some unnecessary
casts. Additionaly, the add function looks quite complicated. This is consistent with
other function translations which are discussed in section2.4.

2.2 Tuples and Records

We follow the SML/NJ compiler (section 3) which compiles tuples down to records.
Thus, every tuple of the form(exp1, exp2, ...)becomes a record of the form{1=exp1,
2=exp2, ...}. This should not surprise the avid SML fan as SML/NJ will, at the top level,
represent the record{1=“hi”, 2=“bye” } and the tuple(“hi”,“bye”): string*string
identically.

The Recordclass represents SML records. Every SML record value maps toan
instance of this class in the Java code. TheRecordclass contains a private data member,
myMapping, of typejava.util.HashMap. SML records are translated to a mapping from
fields (which are of typeString) to the data that they carry (of typeObject). TheRecord
class also contains a functionadd, which takes aStringand anObjectas its parameters
and adds these to the mapping. A record of lengthn will therefore requiren calls to
add. Record projection is little more than a lookup in the record’s HashMap.

2.3 Datatypes

An SML datatype declaration creates a new type with one or more constructors. Each
constructor may be treated as a function of zero or one arguments. SML2Java treats this

252

Fig. 1. Simple variable binding
SML Code:

1 val x=40
2 val y=2
3 val z=x+y

Java Equivalent:

1 public class TopLevel {
2 public static final Integer2 x = (Integer2)
3 (new Integer2 (40));
4
5 public static final Integer2 y = (Integer2)
6 (new Integer2 (2));
7
8 public static final Integer2 z = (Integer2)
9 (Integer2.add()).apply(((

10 (new Record())
11 .add("1", (x)))
12 .add("2", (y))));
13
14 }

Fig. 2.Two records instantiated
SML Code:

1 val a = {name="John Doe", age=20}
2 val b = ("John Doe", 20)

Java Equivalent:

1 public static final Record a = (Record)
2 ((new Record())
3 .add("name", new String2("John Doe")))
4 .add("age", (new Integer2 (20)));
5
6 public static final Record b = (Record)
7 ((new Record())
8 .add("1", new String2("John Doe")))
9 .add("2", (new Integer2 (20)));

253

model literally. An SML datatype,dt, with constructorsc1, c2, c3 . . .is translated to
a class. This class, also nameddt, has static methodsc1, c2, c3 Each such method
returns a new instance ofdt.

Thus, SML code invoking a constructor becomes a static method call in the trans-
lated code. It is important to note that this process is different from the translation
of normal SML functions. The special handling of type constructors greatly enhances
translated code readability.

A datatype translation is given in figure 3. As the SML langauge enforces type
safety, constructor arguments can simply be typeObject. Although more restrictive
types could be specified, there is little benefit in the commoncase where the type is
Record.

2.4 Functions

In our translation model, theFunctionclass encapsulates the concept of an SML func-
tion. Every SML function becomes an instance of this class. The JavaFunctionclass
has a single method,apply, which takes anObjectas its only parameter and returns an
Object. TheFunctionclass encapsulation is necessitated by the fact that functions are
treated as values in SML. As a byproduct of this scheme, function applications become
intuitive; any application is translated toFunctionName.apply(argument).

At an early design stage, the authors considered translating each function to a named
class and a single instantiation of that class. While this model provides named functions
that can be passed to other functions and otherwise treated as data, it does not easily
accommodate anonymous functions. A strong argument for thecurrent model is that
instantiating anonymous subclasses ofFunctionprovides a natural way to deal with
anonymous functions.

We believe this is a sufficiently general approach, and can handle all issues with re-
spect to SML functions (including higher-order functions). In fact, every SML function
declaration (i.e. named function) is translatead, by the SML/NJ compiler, to a recursive
variable binding with an anonymous function. Therefore ourtreatment of anonymous
functions and named functions mirror each other and this similarity lends itself to code
readability.

Other authors have used different techinques for creating functions at runtime. For
example, Kirby [7] uses the Java compiler to generate bytecode dynamically. While
powerful and well suited for imperative programming, this approach is not compatible
with the functional philosophy of SML.

In figure 4, the lines that contain the word “Pattern” form thefoundation of what
will, in future revisions of SML2Java, be fully generalizedpattern matching. Pattern
matching is done entirely at runtime, and consists of recursively comparing compo-
nents of an expression’s value with a pattern. SML/NJ performs some optimizations of
patterns at compile time [1]. However these optimizations are, in general, NP-hard [3]
and SML2Java does not support them. Currently patterns are limited to records
(including tuples), wildcards and integer constants.

254

Fig. 3. A dataype declaration and instantiation
SML Code:

1 datatype qux = FOO | BAR of int
2
3 val myVariable = FOO
4 val myOtherVar = BAR(42)

Java Equivalent:

1 public class TopLevel {
2 public static class qux extends Datatype {
3
4 protected qux(String constructor){
5 super(constructor);
6 }
7
8 protected qux(String constructor,Object data){
9 super(constructor, data);

10 }
11
12 public static qux BAR(Object o){
13 return new qux("BAR", o);
14 }
15
16 public static qux FOO(){
17 return new qux("FOO");
18 }
19
20 }
21 public static final qux myVariable = (qux)
22 qux.FOO();
23
24 public static final qux myOtherVar = (qux)
25 qux.BAR((new Integer2 (42)));
26
27 }

255

Fig. 4. Named function declaration and application
SML Code:

1 val getFirst = fn(x:int, y:int) => x
2 val one = getFirst(1,2)

Java Equivalent:

1 public static final Function getFirst = (Function)
2 (new Function () {
3 Object apply(final Object arg) {
4 final Record rec = (Record) arg;
5 RecordPattern pat = new RecordPattern();
6 pat.add("1", new VariablePattern(new Integer2()));
7 pat.add("2", new VariablePattern(new Integer2()));
8 pat.match(rec);
9 final Integer2 x = (Integer2) pat.get("1");

10 final Integer2 y = (Integer2) pat.get("2");
11 return (Integer2) (x);
12 }
13 });
14
15 public static final Integer2 one = (Integer2)
16 (getFirst).apply(((
17 (new Record())
18 .add("1", (new Integer2 (1))))
19 .add("2", (new Integer2 (2)))));

256

2.5 Let Expressions

A Let interface in Java encapsulates the SML concept of a let expression. TheLet in-
terface has no member functions. Every SML let expression becomes an anonymous
instantiation of theLet interface with one member function,in. This function has no
parameters and returns whatever type is appropriate given the original SML expression.
The in function is called immediately following object instantiation.

A different approach would be to have theLet interface contain the functionin.
Here,in would have no formal parameters, and would return anObject. The advantage
to this would be its consistency with respect to our functiontranslations (i.e. theapply
function), but a possible disadvantage is excessive typecasting, which can greatly reduce
readability.

One might also attempt to separate theLet declaration from the call to itsin
function. If implemented in the most direct manner, such a model would, like the
previous one, require that theLet interface contain anin function. This scheme would
improve code readability. However, as one often has severalLet expressions in the
same name-space in SML, this model would likely suffer from shadowing issues.

Fig. 5.Let expressions are translated like functions
SML Code:

1 val x =
2 let
3 val y = 1
4 val z = 2
5 in
6 y+z
7 end

Java Equivalent:

1 public static final Integer2 x = (Integer2)
2 (new Let() {
3 Integer2 in() {
4 final Integer2 y = (Integer2) (new Integer2 (1));
5 final Integer2 z = (Integer2) (new Integer2 (2));
6 return (Integer2) (Integer2.add()).apply(((
7 (new Record())
8 .add("1", (y)))
9 .add("2", (z))));

10 }
11 }).in();

257

2.6 Module System

Our translation of SML’s module system is straightforward.SML signatures are
translated to abstract classes. SML structures are translated to classes that extend these
abstract signature classes. A structure class only extendsa given signature class if the
original SML structure implements the SML signature. Structure declarations that are
not externally visible in SML (i.e. not included in the implemented signature) are made
private data-members in the generated Java structure class. This is demonstrated in
figure 6.

3 Implementation

Our primary task was to translate high-level SML source codeto high-level Java source
code. As there are several available implementations of SML, we chose to use the front
end of one, Standard ML of New Jersey (SML/NJ) [9]. We use the development flavor
of the compiler (sml-full-cm) to parse and type-check input SML code. We then
translate the abstract syntax tree generated by SML/NJ to our own internal Java syntax
tree and output the Java code in source form.

Taking advantage of the SML/NJ type checker gives us a strongguarantee regard-
ing the safety of the code we are translating. To cite Dr. Andrew Appel, a program
produced from this code ”cannot corrupt the runtime system so that further execution
of the program is not faithful to the language semantics” [2]. In other words, such a
program cannot dump core, access private fields, or mistake types for one another. It
would be interesting to investigate whether these facts, combined with the translation
semantics of SML2Java, imply that similar guarantees hold in the generated Java code.

Other properties of the Core subset of SML are discussed by VanIngwegen [12].
Using HOL [5], she is able to prove, among other things, determinism of evaluation.

4 Conclusion and Future Goals

The current version of SML2Java translates many core constructs of SML, including
primitive values, datatypes, anonymous and recursive functions, signatures and struc-
tures. SML2Java succeeds in translating SML to Java code, while respecting the func-
tional paradigm.

Parametric polymorphism is a key construct that the authorswould like to imple-
ment in SML2Java. Java 1.5 (due out late 2003) will directly support generics [11], and
we believe waiting for Sun’s implementation will facilate generating clean Java code. In
addition, Java’s generics will resemble C++ templates, andour treatment of parametric
polymorphism should highlight the relative merits of each approach.

We would like to add support for several less critical SML constructs. Among these
are exceptions, vectors, open declarations, mutual recursion, functors, and projects con-
taining multiple files. The majority of these should be implementable without excessive
difficulty, and each is expected to be a valuable addition to SML2Java.

258

Fig. 6.Translation of a signature and a structure
SML Code:

1 signature INDEX_CARD = sig
2 val name : string
3 val age : int
4 end
5
6 structure IndexCard :> INDEX_CARD = struct
7 val name = "Professor Michael Jordan"
8 val age = 31
9 val super_secret = "This secret cannot be visible to the outs ide"

10 end

Java Equivalent:

1 public class TopLevel {
2 private static abstract class INDEX_CARD {
3 public static final String2 name = null;
4 public static final Integer2 age = null;
5 }
6
7 public static class IndexCard extends INDEX_CARD {
8 public static final String2 name = (String2)
9 (new String2 ("Professor Michael Jordan"));

10
11 public static final Integer2 age = (Integer2)
12 (new Integer2 (31));
13
14 private static final String2 super_secret = (String2)
15 (new String2 ("This secret cannot be visible to the outside"));
16
17 }
18
19 }

259

5 Acknowledgements

This project was performed as independant research under the guidance of Dexter
Kozen, Cornell University. We would like to thank ProfessorKozen for many insightful
discussions and much valuable advice. We would also like to thank the following for
helpful advice: Andrew Myers, Cornell University, and ToreLarsen, Tromsø Univer-
sity.

260

Bibliography

[1] Aitken, William. SML/NJ Match Compiler Noteshttp://www.smlnj.org/compiler-
notes/matchcomp.ps (1992)

[2] Appel, Andrew W. A critique of Standard MLhttp://ncstrl.cs.princeton.edu/
expand.php?id=TR-364-92 (1992)

[3] Baudinet, Marianne and MacQueen, David.Tree Pattern Matching for ML (ex-
tended abstract)http://www.smlnj.org/compiler-notes/85-note-baudinet.ps (1985)

[4] Blume, Matthias.No-Longer-Foreign: Teaching an ML compiler to speak C ”na-
tively” Electronic Notes in Theoretical Computer Science 59 No. 1 (2001)

[5] Gordon, MelhamIntroduction to HOL. A theroem proving environment for higher
order logicCambridge University Press, 1993

[6] Hicks, Michael.Types and Intermdiate RepresentationsUniversity of Pennsylva-
nia (1998).

[7] Kirby, Graham, et al.Linguistic Reflection in JavaSoftware - Practice & Experi-
ence 28, 10 (1998).

[8] Milner, Robin, et al.The Definition of Standard ML - Revised.Cumberland, RI:
MIT Press, 1997.

[9] SML/NJ Fellowship, The.Standard ML of New Jerseyhttp://www.smlnj.org (July
29, 2003).

[10] Sun Microsystems.Java 2 Platform, Standard Edition, v 1.4.2 API Specification
http://java.sun.com/j2se/1.4.2/docs/api/ (July 18, 2003).

[11] Sun Microsystems.JSR 14 Add Generic Types To The Java Programming Lan-
guagehttp://www.jcp.org/en/jsr/detail?id=14 (July 24, 2003).

[12] VanIngwegen, Myra.Towards Type Preservation for Core SMLhttp://www.myra-
simon.com/myra/papers/JAR.ps.gz

261

262

Constraint Imperative Programming with C++

Olaf Krzikalla

Reico GmbHkrzikalla@gmx.de

Abstract. Constraint-based programming is of declarative nature. Problem so-
lutions are obtained by specifying their desired properties, whereas in imperative
programs the steps that lead to a solution must be defined explicitly. This paper
introduces the Turtle Library, which combines constraint-based and imperative
paradigms. The Turtle Library is based on the language Turtle[1] and enables
constraint imperative programming with C++.

1 Constraint Imperative Programming at a Glance

In an imperative programming language the programmer describes how a solution for
a given problem has to be computed. In contrast to that, in a declarative language the
programmer specifies what has to be evaluated. Constraint-based programming is a
rather new member of the declarative paradigm that was first developed from logic
programming languages. In constraint-based programming the programmer describes
the solution only by specifying the variables, their properties and the constraints over
the set of variables. Actually, no algorithms have to be written. The compiler and run-
time environment are responsible for providing appropriate algorithms and eventually
obtaining a solution.

Meanwhile, constraint-based programming has been extended by concepts of other -
mostly declarative - programming languages. However, the combination of imperative
and constraint-based languages is far less explored. Borning and Freeman-Benson[2]
introduced the term ’constraint-imperative programming’and developed the language
Kaleidoscope[3], combining constraint and object-oriented programming. But object-
orientation is no precondition for constraint-imperativeprogramming. This paper deals
with more fundamental problems of the integration of constraints and constraint solvers
in imperative language concepts. This integration promises some advantages. Impera-
tive programming is a well known paradigm, which is intuitively understood by most
programmers. A lot of efficient and industrial-strength imperative languages exist.
However, an imperative program for a difficult algorithm is sometimes very cumber-
some. Especially for this sort of problems declarative languages have proven their
power. Constraint programming enables the programmer to specify required relations
between objects directly rather than to ensure these relations by algorithms only. So
constraint programs not only often become more compact and readable, but also less
erroneous than their imperative counterparts.

Constraint imperative programming tries to combine the advantages of constraint-
based and traditional imperative programming. A recent development in this field is the
language Turtle, a constraint imperative programming language developed by Martin
Grabmüller at the Technische Universität Berlin. Based on the ideas presented in [1] I
developed the Turtle Library, a constraint imperative programming approach in C++.

263

2 The Basic Concept of Turtle

The fundamental difference between imperative and declarative languages is the model
of time. In pure declarative languages a timing model simplydoes not exist - compu-
tations are specified independent of time. On the other hand,an imperative language
always describes transformations of a given state at one point in time to another state at
the next point in time. Computations are specified by sequences of statements.

Whenever declarative and imperative languages are combined, one of the main is-
sues is the interaction of the integrated declarative concepts with the imperative timing
model. In Turtle this is solved by introducing a lifetime forconstraints and the statement
require, which defines a constraint:

require constraint;

When arequireis reached during the execution of the program, the given constraint
is added to a global constraint store and taken into account during further computations
- its lifetime starts. A constraint doesn’t exist (and the system doesn’t know anything
about it) until the correspondingrequire-statement is executed. Eventually a sequence
of require-statements form a conjunction of the appropriate constraints in the constraint
store. Constraints in the constraint store are considered active.

Of course, if a constraint starts to exist at a certain time, it also can be removed at a
certain time:

require constraint in
statement;
...

end;

The given constraint exists only between thein andend. When the program reaches
the endstatement (or otherwise leaves the block), the constraint is removed from the
constraint store - its lifetime ends. After this the constraint isn’t active any longer.

In order to deal with over- and underconstrained problems constraints need to be
labelled with strenghts to form a constraint hierarchy. Altough a constraint imperative
system without constraint hierarchies could be designed, its usefulness would be dras-
tically reduced, because it would be difficult to constrain variables while the program
dynamically adds or removes constraints. In Turtle each constraint can have a strength
annotation in its definition:

264

require constraint1 : strong;
require constraint2 : mandatory;

When a constraint is annotated with a strength, it is added tothe store with the given
strength, otherwise with the strongest strengthmandatory. This strength was specified
in the previous example for clarity only.

Constraints are defined on constrainable variables. Most ofthe time a constrainable
variable acts like a normal variable: it can be used in expressions and as a function
argument. Only in a constraint statement they differ from their normal counterparts.
A normal variable is treated like a constant, but a constrainable variable acts like a
variable in the mathematical sense, and the constraint solver may change its value in
order to satisfy all constraints existing at this point in time.

var x : int; // a normal variable
var y : ! int; // the exclamation defines a constrained variable
x := 0;
require y<= x in

... // during the execution of this block Turtle ensures y<= 0
end;

Constraints in Turtle are boolean expressions. During the execution of arequire
statement the constraint solver computes a certain value for each constrained variable,
such that all active constraints evaluate to true. Constraints are handled strictlyeager.
Changing a non-constrained variable after it was used in a constraint doesn’t affect
the constraint store. Whenever the program reads a constrained variable, the value last
computed by the solver for this variable is supplied. An exception is raised, if it isn’t
possible to satisfy all mandatory constraints during the execution of arequirestatement.

In Turtle constraints can be used for computing solutions toa certain problem like
other constraint programming approaches. But they are not limited to this usage.require
statements introduce conditionsa priori, which are maintained automatically by the
constraint solver. Hence backtracking like in approaches with a posteriori tests (e.g.
Alma-0[6]) is not neccessary. Due to thea priori nature of constraints in Turtle they can
be used to describe and preserve program invariants or - moregeneral - to express in
declarative manner the meaning of an otherwise imperative program without disrupting
the familiar execution flow.

3 A Turtle in C++

The concepts of Turtle were first implemented in a language developed from scratch.
This approach was chosen because some other features like higher-order functions
should also be integrated. And a new language seemed to be thebest choice for the
seamless combination of imperative, functional and constraint programming. However,
a new language is always in a difficult position. The knowledge base is small, tools
don’t exist, and further development is sometimes driven byacademic interests only.

All concepts of Turtle related to constraint programming are also implementable in
C++. Thats why I think a Turtle Library written in pure C++ serves both the widespread-
ing and further development of Turtle better. In the recent years a lot of developments

265

- especially on the field of generic programming in C++ - made it possible to move
almost all concepts from the Turtle language to the C++ Turtle Library without any
losses. Furthermore, the generic approach of the Turtle Library enables every user to
add, change or optimize constraint solvers at will. This is especially important for user-
defined domains and offers a wide application field for the Turtle Library. The Turtle
Library might be used to solve operational research problems or to program a graphi-
cal user interface. Both problems are typical constraint problems. In the first problem
constraint programming is used only to obtain a solution, which often can be done in a
constraint logic language too (given an appropriate language and - more important - an
appropriate programmer) or by using a rather imperative approach[5]. But for the sec-
ond problem constraint imperative programming really shines. The ’canonical’ example
is a graphical element, which can be dragged by the mouse inside certain borders[4].
The imperative approach looks like this:

void drag ()
{

while (mouse.pressed) { //message processing is left out
int y = mouse.y;
if (y > border.max)

y = border.max;
if (y < border.min)

y = border.min;
draw_element (fix_x, y, graphic);

}
}

Using the Turtle Library the example would look as follows:

void drag ()
{

constrained<int> y;
require (y >= border.min && y <= border.max);
while (mouse.pressed) {

y = mouse.y;
draw_element (fix_x, y(), graphic);

}
}

The above is not only shorter, but expresses the relation between the border-object
and the y-coordinate in exactly the way a programmer would think about it.

3.1 Constrained Variables

A constrained variable is of the generic typeconstrained . A constrained variable
has identity semantics, the copy constructor and standard assignment operator aren’t im-
plemented. If they are needed, an appropriate wrapper (e.g.a reference counted pointer)
has to be defined. The public interface given here is described in detail in the following
sections.

266

template<class T>
class constrained
{

public:
constrained (const T& prefer = T());
constrained<T>& operator= (const T& prefer);
˜constrained ();
T operator ()() const throw (overconstrained_error, ...);
const T& preferred() const;
void unfix() const;

};

The template parameter specifies the value type of the variable. It might be a fun-
damental type likeint or double or an user-defined class. Domains are formed by
non-intersecting sets of value types and for each domain an appropriate constraint solver
has to be provided. Thus each value type is unambiguously bound to a constraint solver.
However Turtle can be used for hybrid domains, because the interface enables the im-
plementation of a constraint solver responsible for more than one value type.

3.2 Declaring Constraints

Constraints can be declared as straightforward as presented in the section 2:

constrained<double> a, b;
double c = 2.0;
require (a >= 0.0);
require (a <= b && a + b <= c);

The composition of the boolean expression inside arequire is done using opera-
tor overloading and expression template techniques. Whichoperators are supported for
a certain value type is defined by the domain and the availableconstraint solver. E.g. it
is rather pointless to support>, < or != for floating point values1. In domains other than
the algebraic ones it’s often better to avoid otherwise meaningless operator overloading.
For this purpose named predicates can be defined and used instead:

edge e = / * ... * /; //compute an edge
constrained<vertex> p;
require (point_on_edge (e, p));

The operator&& forms a conjunction of two expressions just like two subsequent
requires, hence

constrained<double> a;
require (a >= 0 && a <= 2);

is equivalent to

1 Due to the same reasons even the support of == could be argued.

267

constrained<double> a;
require (a >= 0);
require (a <= 2);

The operator|| defines a disjunction. A disjunction can be seen as a branch ina
tree of solutions. Subseqent requires add their constraints to all leafs of the tree.

constrained<double> a, b;
require (a == 0 || a == 1);
require (b == a + 1);
// the store now contains :
// (b == a + 1 && a == 0) || (b == a + 1 && a == 1)

The Turtle Library provides a simple generic algorithm for handling disjunctions.
A certain constraint solver may implement a more sophisticated approach to compute
and maintain solution trees efficiently.

Constraint strengths can be given as a second argument to require like in the Turtle
language:

require (a == b, weak);

Of course these values are only of interest if the underlyingconstraint solver sup-
ports hierarchic constraints.

The Turtle Library internally stores the constraints in several constraint sub-stores.
A constraint sub-store is defined as the set of all constraints over a set of constrained
variables, where each variable of the set is linked to each other variable of the set. Two
variables x and y are linked, if they either both appear in oneconstraint or if x appears
in a constraint containing a variable linked to y.

constrained<double> a, b;
require (a >= 0.0); // generate constraint sub-store 1
require (b >= 0.0); // generate constraint sub-store 2
require (a <= b); // sub-store 1 and 2 are merged

// together

The function templaterequire returns a handle to manage the lifetime of the
constraint. If the return value is ignored, the imposed constraint exists as long as all
constrained variables in this constraint:

constrained<int> a;
{

constrained<int> b;
require (a == b);
//...

//leaving the scope of b, hence a == b
//is removed from the constraint store:
}

268

Otherwise, the lifetime of the constraint is also bound to the lifetime of the returned
constraint handle:

constrained<int> a, b;
{

constraint_handle<int> z = require (a == b);
//...

//leaving the scope of z, hence a == b
//is removed from the constraint store:
}

Still, the constraint exists no longer than all constrainedvariables in it. When the
handle ceases to exist after the constraint did, it is ignored.

3.3 Obtaining Values from Constrained Variables

In a first version of the Turtle Lib, theconstrained<T> class has anoperator
T() const member function to obtain the actual value of the constrained variable.
However, it turns out that this operator sometimes conflictswith the generation of ex-
pression templates in arequire . Thus the function call operatoroperator()()
const was overloaded to read a value from a constrained variable:

std::cout << a(); //prints a value matching all constraints
// to a

Whenever this operator is invoked, the constraint solver isstarted to determine the
value of the appropriate variable. How the value is determined depends mainly on the
solver. When the store is overconstrained and no value can bedetermined, an excep-
tion of typeoverconstrained_error (derived fromstd::logic_error) is
raised.

But more often underconstrained situations occur. For thispurpose the Tur-
tle Library supports a preferred value. A value of type T can be assigned to a
constrained<T> or used to construct such a variable. This value then becomes
the preferred value of the constrained variable. Now, if it turns out that more than one
solution exists for a certain variable, the solution closest to the preferred value is taken:

constrained<double> a (3);
require (a <= 2.5);
std::cout << a(); // prints 2.5

To a certain degree the preferred value acts like a weak constraint. This is espe-
cially useful, if the constraint solver itself doesn’t support constraint hierarchies. Thus
a hierarchic constraint solver isn’t as necessary as in the original Turtle language.

The evaluation of the preferred value is done by the solver implementation. It can
be used to define athreshholdor destinationvalue enabling the solver to terminate the
search through the solution tree as soon as possible.

Some domains consist of incompareable values making it impossible to define a
closest solution. In this case no general behaviour can be defined. Instead the solver
implementation has to define the use of the preferred value.

269

3.4 Implicit Fixing

Once a value is determined for a constrained variable, this value has to be taken into
account for further calculations. The constrained variable itself gets implicitly fixed to
the determined value:

constrained<int> a (2), b (0);
require (a == b);
std::cout << a(); // prints 2
std::cout << b(); // also prints 2

Without implicit fixing the value of b would be evaluated to 0 and hence violate
the required constraint a == b. Implicit fixing is done by generating a new constraint
of the form variable == value. Due to this important side effect the evaluation order of
constrained variables must be carefully considered. If theoutput lines of the above ex-
ample were exchanged, both lines would print 0. And the following leads to unspecified
behavior:

std::cout << a() << b(); // which variable is evaluated
// first?

The implicit fix is not immediatly added to the constraint sub-store but kept in a
delay store inside the sub-store. If only one implicit fix exists in a constraint sub-store,
and the same variable shall be evaluated again, the fix is erased before the evaluation
(later in the process a new fix will be added). If more implicitfixes exist, always all are
taken into account.

constrained<int> a (2), b (0);
require (a == b);
for (int i = 0; i < 3; ++i) {

int j;
std::cin >> j;
a = j;
// prints j, because the only implicit fixed variable is a:
std::cout << a();

}

constrained<int> a (2), b (0);
require (a == b);
std::cout << b(); // prints 0, fixes b
for (int i = 0; i < 3; ++i) {

int j;
std::cin >> j;
a = j;
// always prints 0, because b is fixed, but a is evaluated:
std::cout << a();

}

270

As shown in the last example, sometimes implicit fixes are harmful, especially if
more than one variable is evaluated inside a loop. That’s whya constrained variable can
be unfixed explicitly via the member functionunfix() :

constrained<int> a (2), b (0);
require (a == b);
for (int i = 0; i < 3; ++i) {

int j;
std::cin >> j;
a = j;
std::cout << a(); // prints j and get fixed
std::cout << b(); // prints also j and get fixed
// now more than one fix exist, so all fixes would be
// considered during further evaluations unless we
// explicitly unfix the variables:
a.unfix();
b.unfix();

}

The computation of a value for a constrained variable differs a lot from the original
Turtle language. While in the Turtle language the values of constrained variables are al-
ready determined during a require statement, the Turtle Library delays the computation
until a read-action to a constrained variable occurs. The disadvantage of this approach
seems the need of implicit fixing, which isn’t part of the Turtle language2.

On the other hand the delay of the computation offers some advantages. First, only
when the computation is delayed until a read-action, the preferred value can be eval-
uated correctly. Otherwise a change of the preferred value after some requires could
be ignored. Second, a solver knows which constrained variable actually is being read,
can consider this fact during the computation and hence doesn’t have to evaluate all
variables in every case. And third, lazy evaluation becomespossible. Altough also the
Turtle Library handle constraintseagermostly, it is not limited to this.

3.5 Lazy Evaluation

Lazy evaluation is an often arising issue when declarative and imperative concepts are
combined. Shall a subexpression in a require-statement be evaluated immediately or
shall the evaluation be delayed until the constraint is actually needed for the evaluation
of a constrained variable? Consider the example:

int foo();

int example()
{

int_c a, b
int i = 1;

2 Altough there is an ongoing argument about this topic.

271

require (a == i);
require (b >= foo());
require (a < b);
i = 2;
std::cout << a(); // 1 or 2 ?, is foo() called here ?
std::cout << b(); // or is foo() called only here ?

}

As stated earlier the Turtle Library doesn’t perform lazy evaluation by default. This
decision was made mainly due to lifetime issues. In C++ it’s impossible to ensure that
an arbitrary object exists until all constraints referringto it are erased. Hence the above
example prints 1 fora and callsfoo() during the evaluation of the argument for the
secondrequire . This has the additional benefit, that possible side effectsof functions
inside constraints are more predictable. Iffoo() would be lazy evaluated in the exam-
ple above, it could be called once or twice, depending on the actual implementation of
the underlying constraint solver.

Lazy evaluation can be simulated through the lifetime management of constraints.
But sometimes it is just better to have some lazy evaluated values. Therefore a simple
lazy evaluated value type is provided by the Turtle Library:

template<class T>
class lazy_evaluated
{

public:
explicit lazy_evaluated (const T& init = T());
operator T() const;
operator T&();

};

This class mostly acts like a value of type T, but its actual value is garbage col-
lected (the copy constructor and assignment operator oflazy_evaluated<T> has
identity semantics). Each constraint using a lazy evaluated variable stores a copy of the
correspondinglazy_evaluated<T> variable. The actual value is preserved unless
all references to it are removed. It is only read by the constraint solver when needed
during the evaluation of a constrained variable. Side effects may only happen due to the
copying of T.

int_c a;
lazy_evaluated<int> i = 1;
require (a == i);
i = 2;
std::cout << a(); //reads i at this point and thus prints 2

4 Programming with the Turtle Library

The Turtle Library can be downloaded from
http://home.t-online.de/home/krize6/turtle.htm .

272

At this page also some technical issues are discussed in moredetail. Especially the
steps needed to integrate a new constraint solver in the Turtle Library are described.
Furthermore some more sophisticated examples of constraint imperative programming
are already provided. They demonstrate the use of some techniques and little patterns
to make constraint imperative programming more convenientand flexible.

4.1 User-defined Constraints and Dynamic Expressions

Often the declarative power of expression templates is sufficient to express the con-
straints in a compact and readable manner. But some constraints are so common that
they deserve an own name. Such user-defined constraints can be generated using the
function templatebuild_constraint , which takes an constraint just like require,
but only builds the internal representation of the given expression without adding it to
the constraint store.

typedef constrained<int> int_c;

constraint_solver<int>::expr domain (const int_c& x,
int min,
int max)

{
return build_constraint (x >= min && x <= max);

}

int_c a, b, c;
require (domain (a, 0, 9));
require (domain (b, 0, 99));
require (domain (c, -1, 1));

The naming of complex static expressions further enhances the readability
of a program. But besides this constraint imperative programming also needs a
way to create constraints dynamically. For this the Turtle Library provides a
generic classdynamic_expr , which holds an (sub)expression and can be used
like that, but has value semantics. A rather complex exampleis the function
example_dynamic_puzzle , which is part of the sample file provided on the inter-
net page of the Turtle Library.

4.2 Optimization

Constraint programming supplies a lot of tools to optimize agiven function for a given
set of constraints. Optimization is one the main usages of constraint programming.
Hence, optimization should be possible with the Turtle Library, too. By using a pre-
ferred value for a given expression, optimization can be done without the needs of
special library functions. Consider the following example:

double_c x, y;
require (y >= 0);
require (y >= 3 - 2 * x);

273

Given these constraints the sum of x and y shall be minimized.These can be done
by a little pattern of the following three lines:

double_c min (- 1000.0);
require (min == x + y);
std::cout << min(); // prints 1.5

First a constrained variable has to be declared and the preferred value have to be set
to an absolute minimal or maximal border3. Second, this variable has to be set equal
to the expression to be optimized. And third, by reading the variable the value closest
to the given preferred value gets calculated and stored in the variable. Furthermore
the implicit fixing also immediately limits other constrained variables to values at the
searched optimum.

5 Conclusion and Future Works

The Turtle Library defines an interface for the integration of constraint programming
concepts in an imperative language and provides an implementation of this interface for
a popular language. Hopes are, that this opens a wider application field for constraint
imperative programming. Only the practical use will show further needs. E.g. if an
implicit fix of a constrained variable has to be considered isdefined by a rather complex
rule. It’s unclear if this rule is of any practical value. Also, for the moment there is no
way to unfix a bunch of variables at once (e.g. all variables ofa sub-store).

The classlazy_evaluated<T> should be treated as a simple example for lazy
evaluation. It is possible to further parametrize this class to allow more complex actions
during constraint evaluation including the call of functions. If this is done, side effects
of a lazy evaluated function has to be considered carefully as stated in section 3.5. At
the moment it’s quite unclear if the gain of flexibility outweighs the possiblity of near
unpredictable side effects.

The modelling of algebraic problems using the Turtle Library is already very con-
venient. But the generic approach offers a lot more. A lot of publications in the recent
decade has shown, that constraint programming is well-suited for several problem do-
mains. But unfortunately a lot of these publications eitherintroduced a whole new lan-
guage or at least extended an existing language by adding newlanguage constructs (and
thus became incompatible to the parent language). But an application programmer can’t
just move from one language to the next at will. Due to business, management and also
educational issues he has to stick to one - often for years. With the Turtle Library now
even the application programmer gets a tool to use constraints in C++ in the convenient
declarative manner as it is already used for years in other languages.

3 This example is rather abstract and hence knows no ’absolute’ minimum. In practical applica-
tions it should be always possible to find a reasonable value (see alsoexample knapsack).

274

Bibliography

[1] Grabmüller, M.: Constraint Imperative Programming. Diploma Thesis, Technische
Universität Berlin 2003,

[2] Freeman-Benson, B.N.: Constraint Imperative Programming. PhD Thesis, Univer-
sity of Washington, 1991. Published as Department of Computer Science and Enge-
nieering Technical Report 91-07-02

[3] Borning, A. and Freeman-Benson, B.N.: The design and implementation of Kalei-
doscope’90, a constraint imperative programming language. In Proceedings of the
IEEE Computer Society 1992 International Conference on Computer Languages,
pages 174-180, 1992

[4] Lopez, G.: The design and implementation of Kaleidoscope, a constraint impera-
tive programming language. PhD Thesis, University of Washington, 1997.

[5] ILOG. ILog Web Site.
http://www.ilog.com , last visited 2003-06-23

[6] Apt, K.R., Brunekreef, J., Partington, V. and Schaerf, A.: Alma-0: An imperative
language that supports declarative programming. ACM Toplas, 20(5):1014-1066,
1998.

275

276

Patterns in Datatype-Generic Programming

Jeremy Gibbons

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

jeremy.gibbons@comlab.ox.ac.uk

Abstract. Generic programmingconsists of increasing the expressiveness of
programs by allowing a wider variety of kinds of parameter than is usual. The
most popular instance of this scheme is the C++ Standard Template Library.
Datatype-generic programmingis another instance, in which the parameters take
the form of datatypes. We argue that datatype-generic programming is suffi-
cient to express essentially all the genericity found in theStandard Template
Library, and to capture the abstractions motivating manydesign patterns. More-
over, datatype-generic programming is a precisely-definednotion with a rigorous
mathematical foundation, in contrast to generic programming in general and the
C++ template mechanism in particular, and thereby offers the prospect of better
static checking and a greater ability to reason about generic programs. This paper
describes work in progress.

1 Introduction

Generic programming[28, 19] is a matter of making programs more adaptable by mak-
ing them more general. In particular, it consists of allowing a wider variety of entities
as parameters than is available in more traditional programming languages.

The most popular instantiation of generic programming today is through the C++
Standard Template Library (STL). TheSTL is basically a collection of container classes
and generic algorithms operating over those classes. TheSTL is, as the name suggests,
implemented in terms of C++’s template mechanism, and thereby lies both its flexibility
and its intractability.

Datatype-generic programming(DGP) is another instantiation of the idea of generic
programming.DGP allows programs to be parameterized by adatatypeor type functor.
DGP stands and builds on the formal foundations of category theory and theAlgebra
of Programmingmovement [8, 7, 10], and the language technology of Generic Haskell
[22, 12].

In this paper, we argue thatDGP is sufficient to express essentially all the genericity
found in theSTL. In particular, we claim that various programming idioms that can at
present only be expressed informally asdesign patterns[17] could be captured formally
as datatype-generic programs. Moreover, becauseDGP is a precisely-defined notion
with a rigorous mathematical foundation, in contrast to generic programming in general
and the C++ template mechanism in particular, this observation offers the prospect of
better static checking of and a greater ability to reason about generic programs than is
possible with other approaches.

277

This paper describes work in progress — in fact, it describeswork largely in the
future. The United Kingdom’s Engineering and Physical Sciences Research Council is
funding a project calledDatatype Generic Programming, starting around September
2003. The work described in this paper will constitute abouta third of that project; a
second strand, coordinated by Roland Backhouse at Nottingham, is looking at more
of the underlying theory, including logical relations for modular specifications, higher-
order naturality properties, and termination through well-foundedness; the remainder of
the project consists of an integrative case study.

The rest of this paper is structured as follows. Section 2 describes the principles un-
derlying the C++ Standard Template Library. Section 3 motivates and defines Datatype-
Generic Programming, and explains how it differs from a number of similar approaches
to genericity. Section 4 discusses the Design Patterns movement, and presents our case
for the superiority of datatype genericity over informal prose for capturing patterns.
Section 5 concludes by outlining our future plans for theDGP project.

2 Principles Underlying the STL

The STL [6] is structured around four underlying notions:container types, iterators,
algorithms, andfunction objects. These notions are grouped into a hierarchy (in fact,
a directed acyclic graph) ofconcepts, representing different abstractions and their rela-
tionships. The library is implemented using the C++template mechanism, which is the
only means of writing generic programs in C++. This section briefly analyzes these six
principles, from a functional programmer’s point of view.

2.1 The C++ Template Mechanism

The C++ template mechanism provides a means for classes and functions to be parame-
trized by types and (integral, enumerated or pointer) values. This allows the programmer
to express certain kinds of abstraction that otherwise would not be available. A typical
example of a function parametrized by a type is the functionswap below:

template〈class T 〉
void swap(T& a,T& b) {T c = a; a = b; b = c; }
main() {

int i1 = 3, i2 = 4; swap〈int〉(i1, i2);
double d1 = 3.5, d2 = 4.5; swap〈double〉(d1, d2);
}

The same function template is instantiated at two differenttypes to yield two different
functions. Container classes form typical examples of parametrization of a class by a
type; the example below shows the outline of aVector class parametrized by size and
by element type.

278

template〈class T , int size〉
class Vector {private : T values [size]; . . .};
main() {

Vector〈int, 3〉 v ;
Vector〈Vector〈double, 100〉, 100〉matrix ;
}

The same class template is instantiated three times, to yield a one-dimensional vector
of three integers and a two-dimensional 100-by-100 matrix of doubles.

A template is to all intents and purposes a macro; little is orcan be done with it
until the parameters are instantiated, but the instantiations that this yields are normal
code and can be checked, compiled and optimized in the usual way. In fact, the de-
cision about which template instantiations are necessary can only be made when the
complete program is available, namely at link time, and typically the linker has to call
the compiler to generate the necessary instantiations.

The C++ template mechanism is really aspecial-purpose, meta-programming
technique, rather than a general-purpose generic-programming technique. Meta-
programming consists of writing programs in one language that generate or otherwise
manipulate programs written in another language. The C++ template mechanism is a
matter of meta-programming rather than programming because templated code is not
actually ‘real code’ at all: it cannot be type-checked, compiled, or otherwise manipu-
lated until the template parameter is instantiated. Some errors in templated code, such
as syntax errors, can be caught before instantiation, but they are in the minority; static
checking of templates is essentially impossible. Thus, a class template is not a formal
construct with its own semantics — it is one of the ingredients from which such a formal
entity can be constructed, but until the remaining ingredients are provided it is merely
a textual macro. In a programming language that offers such atemplate mechanism as
its only support for generic programming, there is no hope for a calculus of generic
programs: at best there can be a calculus of their specific instances.

The template mechanism is a special-purpose, as opposed to general-purpose, meta-
programming technique, because only limited kinds of compile-time computation can
be performed. Actually, the mechanism provides surprisingexpressive power: Un-
ruh [38] demonstrated the disquieting possibility of a program whose compilation
yields the prime numbers as error messages, Czarnecki and Eisenecker [13] show
the Turing-completeness of the template mechanism by implementing a rudimentary
LISP interpreter as a template meta-program, and Alexandrescu [4] presents a tour-de-
force of unexpected applications of templates. But even if technically template meta-
programming has great expressiveness, it is pragmaticallynot a convenient tool for
generating programs; applications of the technique feel like tricks rather than general
principles. Everything computable is expressible, albeitsometimes in unnatural ways.
A true general-purpose meta-programming language would support ‘programs as data’
as first-class citizens, and simple and obvious (as opposed to ‘surprising’) techniques
for manipulating such programs [35].

There are several consequences of the fact that templated code is a meta-program
rather than (a fragment of) a pure program. They all boil downto the fact that separate

279

compilation of the templated code is essentially impossible; it isn’t real code until it is
instantiated. Therefore:

– templated code must be distributed in source rather than binary form, which might
be undesirable (for example, for intellectual property reasons);

– static error checking is in general precluded, and any errors are revealed only at
instantiation time; moreover, error reports are typicallyverbose and unhelpful, be-
cause they relate to the consequences of a misuse rather thanthe misuse itself;

– there is a problem of ‘code bloat’, because different instantiations of the same tem-
plated code yield different units of binary code.

There is work being done to circumvent these problems by resorting to partial evalua-
tion [39], but there is no immediate sign of a full resolution.

2.2 Container Types

A container typeis a type of data structures whose purpose is to contain elements of
another type, and to provide access to those elements. Examples include arrays, se-
quences, sets, associative mappings, and so on.

To a functional programmer, this looks like apolymorphic datatype; for example,

data List α = Nil | Cons α (List α)

A data structure of typeList α for someα will indeed contain elements of typeα, and
will (through pattern-matching, for example) provide access to them. Such polymorphic
datatypes can be given a formal semantics via the categorical notion of afunctor [10],
an operation simultaneously on types (taking a typeα to the typeList α) and functions
(taking a function of typeα→ β to the map function of typeList α→ List β).

However, that response is a little too simple. Certainly, some polymorphic datatypes
and some functors correspond to container types, but not alldo. For example, consider
the polymorphic type

data Transformer α = Trans (α→ α)

(The natural way to define this type in Haskell [34] is with a type synonym rather than
a datatype declaration, but we’ve chosen the latter to make the point clearer.) There is
no obvious sense in which a data structure of typeTransformer α ‘contains’ elements
of typeα. Hoogendijk and de Moor [24] have shown that one wants to restrict attention
to the functors with amembershipoperation. Technically, in their relational setting, the
membership of a functorF is the largest lax natural transformation fromF to Id , the
identity functor; informally, membership is a non-deterministic mapping selecting an
arbitrary element from a container data structure. Some functors, such asTransformer ,
have no membership operation, and so do not correspond to container types according
to this definition.

280

2.3 Iterators

The essence of theSTL is the notion of aniterator, which is essentially an abstraction of
a pointer. The elements of a container data structure are made accessible by providing
iterators over them; the container typically provides operationsbegin() andend() to
yield pointers to the first element and to ‘one step beyond’ the last element.

Basic iterators may be compared for equality, dereferencedand incremented. But
there are many different varieties of iterator:input iteratorsmay be dereferenced only
asR-values (for reading), andoutput iteratorsonly asL-values (for writing);forward
iterators may be deferenced in both ways, and may also be copied (so thatmultiple
elements of a data structure may be accessed at once);bidirectional iteratorsmay also
be decremented; andrandom-access iteratorsallow amortized constant-time access to
arbitrary elements.

Despite the name, iterators in theSTL do not express exactly the same idea as the
ITERATOR design pattern, although they have the same intent of ‘providing a way to
access the elements of an aggregate object sequentially without exposing its underlying
representation’ [17]. In fact, the proposed design in [17] is fairly close to anSTL input
iterator: an existing collection may be traversed from beginning to end, but the identities
of the elements in the collection cannot be changed (although their state may be).

What all these varieties of iterator have in common, though,is that they point to in-
dividual elements of the data structure. This is inevitablegiven an imperative paradigm:
as Austern [6] puts it, ‘The moving finger writes, and having writ, moves on’, and al-
though under more refined iterator abstractions the moving finger may rewrite, and may
move backwards as well as forwards, it is still a finger pointing at a single element of
the data structure.

One functional analogue of iterators for traversing a data structure is themap op-
erator that arises as the functorial action on element functions, acting on each element
independently. More generally, one could point tomonadic maps[15], which act on the
elements one by one, using the monad to thread some ‘state’ through the computation.

However, lazy functional programmers are liberated by the availability of ‘new
kinds of glue’ [26] for composing units of code, and have other options too. For exam-
ple, they may use lists to achieve a similar separation of concerns: the interface between
a collection data structure and its elements is via a list of these elements. The analogue
to the distinction between input and output iterators (R-values andL-values) is the pro-
vision of one function to yield thecontentsof a data structure as a list of elements, and
another togeneratea new data structure from a given list of elements.

This functional insight reveals a rather serious omission in the STL approach,
namely that it only allows the programmer to manipulate a data structure in terms of its
elements. This is a very small window through which to view the data structure itself.
A map ignores the shape of a data structure, manipulating theelements but leaving the
shape unchanged; iterator-style access also (deliberately) ignores the shape, flattening
it to a list. Neither is adequate for capturing problems thatexploit the shape of the data,
such as pretty-printers, structure editors, transformation engines and so on. A more gen-
eral framework is obtained by providingfolds to consume data structures andunfolds
to generate them [18] — indeed, thecontents andgenerate functions mentioned above
are instances of folds and unfolds respectively, and amap is both a fold and an unfold.

281

2.4 Concepts

We noted in the previous section that the essence of theSTL is a hierarchy of vari-
eties of iterator. In theSTL, the members of this hierarchy are calledconcepts. Roughly
speaking, a concept is a set of requirements on a type (in terms of the operations that
are available, the laws they satisfy, and the asymptotic complexities in time and space);
equivalently, a concept can be thought of as the set of all types satisfying those require-
ments.

Concepts are not part of C++; they are merely an artifact of the STL. An STL refer-
ence manual [6] can do no more than to describe a concept in prose. Consequently, it is
a matter of informal argument rather than formal reasoning whether a given type is or
is not a model of a particular concept. This is a problem for users of theSTL, because
it is easy to make mistakes by using an inappropriate type in aparticular context: the
compiler cannot in general check the validity of a particular use, and tracking down
errors can be tricky. There have been some valiant attempts to address this problem by
programming idioms [36, 31] or static analysis [21], but ultimately the language seems
to be a part of the problem here rather than a part of the solution.

The solution seems obvious to the Haskell programmer: use type classes [29]. A
type class captures a set of requirements on a type, or equivalently it describes the set of
types that satisfy those requirements. (Type classes are more than just interfaces: they
can provide default implementations of operations too, andtype class inference amounts
to automatic selection of an implementation.) Type classesare only an approximation
to the notion of a concept in theSTL sense, because they can capture only the signatures
of operations and not their extensional (laws) or intensional (complexity) semantics.
However, they are statically checkable within the language, which is at least a step
forwards: C++ concepts cannot even capture signatures formally. The Haskell collection
class library Edison [11, 33] uses type classes formally in the same way thatSTL uses
concepts informally.

2.5 Algorithms and Function Objects

The bulk of theSTL, and indeed its whole raison d’être, is the family of generic algo-
rithmsover container types made possible by the notion of an iterator. These algorithms
are general-purpose operations such as searching, sorting, comparing, copying, permut-
ing, and so on. Iterators decouple the algorithms from the container types on which they
operate: the algorithm is described in terms of an abstract iterator interface, and is then
applicable to any container type on which an appropriate iterator is available.

There is no new insight provided by the algorithms per se; they arise as a natural
consequence of the abstractions provided (whether informally as concepts or formally
as type classes) to access the elements of container types. In the STL, algorithms are
represented as function templates, parametrized by modelsof the appropriate iterator
concept. To a Haskell programmer, algorithms in this sense correspond to functions
with types qualified by a type class.

The remaining principle on which theSTL is built is that of afunction object(some-
times called a ‘functor’, but in a different sense that the functors of category theory).
Function objects are used to encapsulate function parameters to algorithms; typical uses

282

are for parametrizing a search function by a predicate indicating what to search for, or
a sorting procedure by an ordering.

Function objects also yield no new insight to the functionalprogrammer. In theSTL,
a function object is represented as an object with a single method which performs the
function. This is essentially an instance of the STRATEGY design pattern [17]. To a
functional programmer, of course, function objects are unnecessary: functions are first-
class citizens of the language, and a function can be passed as a parameter directly.

3 Datatype Genericity

We propose a new paradigm for generic programming, which we have calleddatatype-
generic programming(DGP). The essence ofDGP is the parametrization of values (for
example, of functions) by adatatype. We use the term ‘datatype’ here in the sense dis-
cussed in Section 2.2: a container type, or more formally a functor with a membership
operation. For example, ‘List ’ is a datatype, whereas ‘int ’ is merely a type.

(Since a datatype is one type parametrized by another — ‘lists of αs, for some
typeα’ — and a datatype-generic program is a program parametrizedin turn by such
a type-parametrized type, we toyed briefly with the idea of describing our proposal as
for a ‘type-parametrized–type’—parametrized theory of programming, or TPTPTPfor
short. But we decided that was a bit of a mouthful.)

3.1 An Example of DGP

Consider for example the parametrically polymorphic programsmaplist ,

maplist :: (α→ β)→ List α→ List β

maplist f Nil = Nil

maplist f (Cons a x) = Cons (f a) (maplist f x)

and (for the appropriate definition of theTree datatype)maptree,

maptree :: (α→ β)→ Tree α→ Tree β

maptree f (Tip a) = Tip (f a)
maptree f (Bin x y) = Bin (maptree f x) (maptree f y)

Both of these programs are already quite generic, in the sense that a single piece of code
captures many different specific instances. However, the two programs are themselves
clearly related, and aDGP language would allow their common features to be captured
in a single definitionmap:

map〈Unit〉 () = ()
map〈Const a〉 x = x

map〈+〉 f g (Inl u) = Inl (f u)
map〈+〉 f g (Inr v) = Inr (g v)
map〈×〉 f g (u, v) = (f u, g v)

283

This single definition is parametrized by a datatype; in thiscase it is defined by struc-
tural induction over a grammar of datatypes. The two parametrically polymorphic
programs are of course instances of this one datatype-generic program:maplist =
map〈List〉 andmaptree = map〈Tree〉.

At first glance, this looks rather like a generic algorithm that could have come from
theSTL, and indeed in this case that is a valid analogy to make:map-like operations can
be expressed in theSTL. However, the crucial difference is thatDGP allows a program
to exploit the shape of the data on which it operates. For example, one could write
datatype-generic functions to encode a data structure as a bit string and to decode the
bit string to regenerate the data structure [27]: theshapeof the data structure is related
to thevalueof the bitstring. A more sophisticated example involves Huet’s ‘Zipper’
[25] for efficiently but purely functionally representing atree with a cursor position;
different types of tree require different types of zipper, and it is possible [1, 23] to
write datatype-generic operations on the zipper: here, theshape of one data structure
determines the shape of an auxilliary data structure in a rather complicated fashion.
Neither of these examples are possible with theSTL.

3.2 Isn’t This Just. . . ?

As argued above, the parametrization of programs by datatypes is not the same as
generic programmingin the STL sense. The latter allowsabstraction fromthe shape
of data, but notexploitation of the shape of data. Indeed, this is why we chose a new
term ‘DGP’ instead of simply using ‘GP’: we would prefer the latter term, but feel that it
has already been appropriated for a more specific use than we would like. (For example,
one often sees definitions such as ‘Generic programming is a methodology for program
design and implementation that separates data structures and algorithms through the use
of abstract requirement specifications’ [37, p19]. We feel that such definitions reduce
generic programming to good old-fashioned abstraction.)

DGP is not the same thing asmeta-programmingin general, and template meta-
programming in particular. Meta-programming is a matter ofwriting programs that
generate or otherwise manipulate other programs. For example, C++ template meta-
programs yield ordinary C++ code when instantiated (at least notionally, although the
code so generated is typically never seen); they are not ordinary C++ programs in their
own right. A meta-program for a given programming language is typically not a pro-
gram written in that language, but one written in a meta-language that generates the
object program when instantiated or executed. In contrast,a datatype-generic program
is a program in its own right, written in (perhaps an enrichment of) the language of the
object program.

Neither isDGP the same thing as polymorphism, in any technical sense we know.
It is clearly not the same thing as ordinaryparametric polymorphism, which allows
one to write a single program that can manipulate both lists of integers and lists of
characters, but does not allow one to write a single program that manipulates both lists
of integers and trees of integers. We also believe (but have yet to study this in depth)
thatDGP is not the same thing ashigher-order parametric polymorphismeither, because
in general the programs are not parametric in the functor parameter: if they were, they

284

might manipulate the shape of data but could not compute withit, as with the encoding
and decoding example cited above.

Nor is it the same thing asdependently typed programming[5], which is a mat-
ter of parametrizing types by values rather than values by types. Dependent types are
very general and powerful, because they allow the types of values in the program to
depend on other values computed by that program; but by the same token they rule
out the possibility of most static checking. (A class template parametrized by a value
rather than a type bears some resemblance to type dependent on a value, but in C++ the
actual template parameters must be statically determined for instantiation at compile
time, whereas dependent type theory requires no such separation of stages.) It would be
interesting to try to develop a calculus of dependently typed programming, but that is a
different project altogether, and a much harder one too.

Finally, DGP is not simply Generic Haskell [12], although the datatype-generic pro-
gram formap we showed above is essentially a Generic Haskell program. The Generic
Haskell project is concentrating on the design and implementation of a language that
supportsDGP, but is not directly addressing the problem of developing a calculus of
such programs. Our project has strong connections with the Generic Haskell project,
and we are looking forward to making contributions to the design based on our theory-
driven insights, as the language is making contributions tothe theory by posing the
question of how it may be used. However, Generic Haskell is just one possible imple-
mentation technique forDGP.

4 Patterns of Software

A design pattern‘systematically names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented systems’ [17]. The intention
is to capture best practice and experience in software design in order to facilitate the
education of novices in what constitutes good designs, and the communication between
experts about those good designs. The software patterns movement is based on the
work of Christopher Alexander, who for over thirty years hasbeen leading a similar
movement in architecture [3, 2].

It could be argued that many of the patterns in [17] are idiomsfor mimicking DGP

in languages that do not properly support such a feature. Because of the lack of proper
language support, a pattern can generally do no better than to motivate, describe and ex-
emplify an idiom: it can refer indirectly to the idiom, but not present the idiom directly
as a formal construction. For example, the ITERATOR pattern shows how an algorithm
that traverses the elements of a collection type can be decoupled from the collection
itself, and so can work with new and unforeseen collection types; but for each such
collection type an appropriate new ITERATOR class must be written. (The programmer
may be assisted by the library, as in Java [20], or the language, as in C♯ [14], but still
has to write something for each new collection type.) A language that supportedDGP

would allow the expression of a single datatype-generic program directly applicable to
an arbitrary collection type: perhaps a function to yield the elements as a lazy list, or a
map operation to transform each element of a collection.

285

The situation is no better with theSTL than with design patterns. We argued above
that iterators in theSTL sense are more general than the ITERATOR pattern. Neverthe-
less, C++ provides no support for defining the iterator concept, so it too can only be
referred to indirectly; and again, for every new collectiontype an appropriate imple-
mentation of the concept must be provided.

As another example, the VISITOR pattern [17] allows one to decouple a multivariant
datatype (such as abstract syntax trees for a programming language) from the specific
traversals to be performed over that datatype (such as type checking, pretty printing, and
so on), allowing new traversals to be added without modifying and recompiling each
of the datatype variants. However, each new datatype entails a new class of VISITOR,
implemented according to the pattern. ADGP language would allow one to write a
single datatype-generic traversal operator (such as afold) once and for all multivariant
datatypes.

(Alexandrescu [4] does present a ‘nearly generic’ definition of the VISITOR pattern
using clever template meta-programming, but it relies on C++ macros, and still requires
the foresight in designing the class hierarchy to insert a call to this macro in every class
in the hierarchy that might be visited.)

It is sometimes said that patterns cannot be automated; anything that can be cap-
tured completely formally is too restricted to be a proper pattern. Alexander describes
a pattern as giving ‘the core of the solution to [a] problem, in such a way that you can
use this solution a million times over, without ever doing itthe same way twice’ [3];
Gamma et al. state that ‘design patterns are not about designs such as linked lists and
hash tables that can be encoded in classes and reused as is’ [17]. We are sympathetic to
the desire to ensure that patternity does not become a synonym for ‘a good idea’, but do
not feel that that means we should give up on attempts to formalize patterns.

Alexander, in his foreword to Gabriel’s book [16], hopes that the software patterns
movement will yield ‘programs which make you gasp because oftheir beauty’. We
think that’s a goal worth aiming for, however optimistically. We have yet to see a meta-
programming framework that supports beautiful programming (although we confess to
being impressed by the intricate possibilities of templatemeta-programming demon-
strated by [4]), but we have high hopes that datatype-generic programs could be breath-
takingly beautiful.

5 Future Plans

The DGP project is due to start around September 2003; the work outlined in this pa-
per constitutes about a third of the total. One of the initialaims of this strand will
be an investigation into the relationships between genericprogramming (as exhibited
in libraries like theSTL), structural and behavioural design patterns (as described by
[17]), and the mathematics of program construction (epitomized by Hoogendijk and
de Moor’s categorical characterization of datatypes [24]).

In the short term, we intend to use the insights gained from this investigation to
prototype a datatype-generic collection library in Generic Haskell [12] (perhaps as a
refinement of Okasaki’s Edison library [33]). This will allow us to replace type-unsafe
meta-programming with type-safe and statically checkabledatatype-generic program-

286

ming. Ultimately, however, we hope to be able to apply these insights to programming
in more traditional object-oriented languages, perhaps bycompilation from a dedicated
DGP language.

But the real purpose of the project will be to generalize theories of program calcu-
lation such as Bird and de Moor’s relational ‘algebra of programming’ [10], to make it
more applicable to deriving the kinds of programs that usersof theSTL write. This will
link with Backhouse’s strand of theDGP project, which is looking at more theoretical
aspects of datatype genericity: higher-order naturality properties, logical relations, and
so on. We intend to build on this work to develop a calculus forgeneric programming.

More tangentially, we have been intrigued by similarities between some of the more
esoteric techniques for template meta-programming [13, 4]and some surprising possi-
bilities for computing with type classes in Haskell [32, 30,9]. It isn’t clear yet whether
those similarities are a coincidence or evidence of some deeper correspondence; in the
light of our arguments in this paper that type classes are theHaskell analogue ofSTL

concepts, we suspect there may be some deep connection here.

6 Acknowledgements

The help of the following people and organizations is gratefully acknowledged:

– Roland Backhouse, Graham Hutton, Ralf Hinze and Johan Jeuring, for their contri-
butions to theDGP grant proposal;

– Richard Bird, for inspiring and encouraging this line of enquiry;
– Tim Sheard, for his elegant definition of generic programming;
– EPSRC grant GR/S27078/01, for financial support.

287

Bibliography

[1] Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride. Deriva-
tives of containers. In Martin Hofmann, editor,LNCS 2701: Typed Lambda Cal-
culi and Applications, pages 16–30. Springer-Verlag, 2003.

[2] Christopher Alexander.The Nature of Order. Oxford University Press, To appear
in 2003.

[3] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson, Ingrid
Fiksdahl-King, and Shlomo Angel.A Pattern Language. Oxford University Press,
1977.

[4] Andrei Alexandrescu.Modern C++ Design. Addison-Wesley, 2001.
[5] Lennart Augustsson. Cayenne: A language with dependenttypes.SIGPLAN No-

tices, 34(1):239–250, 1999.
[6] Matthew H. Austern.Generic Programming and the STL. Addison-Wesley, 1999.
[7] R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and

J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and
G. Scollo, editors,Proceedings of the 2nd Conference on Algebraic Methodology
and Software Technology, AMAST’91, pages 303–326. Springer-Verlag, Work-
shops in Computing, 1992.

[8] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der Woude.
Relational catamorphisms. In Bernhard Möller, editor,Proceedings of the IFIP
TC2/WG2.1 Working Conference on Constructing Programs from Specifications,
pages 287–318. Elsevier Science Publishers B.V., 1991.

[9] Roland Backhouse and Jeremy Gibbons. Programming with type classes. Presen-
tation at WG2.1#55, Bolivia, January 2001.

[10] Richard S. Bird and Oege de Moor.Algebra of Programming. Prentice Hall, 1997.
[11] Andrew Bromage. Haskell Foundation Library.www.sourceforge.net/

projects/hfl/ , 2002.
[12] Dave Clarke, Ralf Hinze, Johan Jeuring, Andres Löh, and Jan de Wit. The Generic

Haskell user’s guide. Technical Report UU-CS-2001-26, Universiteit Utrecht,
2001.

[13] Krzysztof Czarnecki and Ulrich Eisenecker.Generative Programming: Methods,
Tools and Applications. Addison-Wesley, 2000.

[14] Peter Drayton, Ben Albahari, and Ted Neward.C♯ in a Nutshell. O’Reilly, 2002.
[15] Maarten Fokkinga. Monadic maps and folds for arbitrarydatatypes. Dept INF,

Univ Twente, June 1994.
[16] Richard P. Gabriel.Patterns of Software: Tales from the Software Community.

Oxford University Press, 1996.
[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
[18] Jeremy Gibbons. Origami programming. In Jeremy Gibbons and Oege de Moor,

editors,The Fun of Programming. Palgrave, 2003.
[19] Jeremy Gibbons and Johan Jeuring, editors.Generic Programming. Kluwer Aca-

demic Publishers, 2003.

288

[20] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.The Java Language Spec-
ification Second Edition. Addison-Wesley, Boston, Mass., 2000.

[21] Douglas Gregor and Sybille Schupp. Making the usage of STL safe. In Gibbons
and Jeuring [19].

[22] Ralf Hinze. Polytypic values possess polykinded types. Science of Computer
Programming, 43:129–159, 2002. Earlier version appears in LNCS 1837: Mathe-
matics of Program Construction, 2000.

[23] Ralf Hinze and Johan Jeuring. Weaving a web.Journal of Functional Program-
ming, 11(6):681–689, 2001.

[24] Paul Hoogendijk and Oege de Moor. Container types categorically. Journal of
Functional Programming, 10(2):191–225, 2000.

[25] Gérard Huet. The zipper.Journal of Functional Programming, 7(5):549–554,
September 1997.

[26] John Hughes. Why functional programming matters.Computer Journal, 1989.
[27] Patrik Jansson and Johan Jeuring. Polytypic data conversion programs.Science

of Computer Programming, 43(1):35–72, 2002.
[28] Mehdi Jazayeri, Rüdiger G. K. Loos, and David R. Musser, editors.Generic Pro-

gramming. Springer-Verlag, 2000.
[29] Mark P. Jones.Qualified Types: Theory and Practice. DPhil thesis, University of

Oxford, 1992.
[30] Conor McBride. Faking it: Simulating dependent types in Haskell. Journal of

Functional Programming, 12(4&5):375–392, 2002.
[31] Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. InFirst

Workshop on C++ Template Programming, October 2000.
[32] Matthias Neubauer, Peter Thiemann, Martin Gasbichler, and Michael Sperber.

Functional logic overloading. InSymposium on Principles of Programming Lan-
guages, pages 233–244, 2002.

[33] Chris Okasaki. An overview of Edison. Haskell Workshop, 2000.
[34] Simon Peyton Jones, editor.Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003.
[35] Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell.

In Haskell Workshop, 2002.
[36] Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric

polymorphism in C++. InFirst Workshop on C++ Template Programming, Octo-
ber 2000.

[37] Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine.The Boost Graph Li-
brary. Addison-Wesley, 2002.

[38] Erwin Unruh. Prime number computation. ANSI X3J16-94-0075/ISO WG21-
462, 1994.

[39] Todd Veldhuizen. Five compilation models for C++ templates. InFirst Workshop
on C++ Template Programming, October 2000.

289

290

NIC Series John von Neumann Institute for Computing

Already published:

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings
Johannes Grotendorst (Editor)
Winter School, 21 - 25 February 2000, Forschungszentrum Jülich
NIC Series Volume 1
ISBN 3-00-005618-1, February 2000, 562 pages
out of print

Modern Methods and Algorithms of Quantum Chemistry -
Poster Presentations
Johannes Grotendorst (Editor)
Winter School, 21 - 25 February 2000, Forschungszentrum Jülich
NIC Series Volume 2
ISBN 3-00-005746-3, February 2000, 77 pages
out of print

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings, Second Edition
Johannes Grotendorst (Editor)
Winter School, 21 - 25 February 2000, Forschungszentrum Jülich
NIC Series Volume 3
ISBN 3-00-005834-6, December 2000, 638 pages

Nichtlineare Analyse raum-zeitlicher Aspekte der
hirnelektrischen Aktivit ät von Epilepsiepatienten
Jochen Arnold
NIC Series Volume 4
ISBN 3-00-006221-1, September 2000, 120 pages

Elektron-Elektron-Wechselwirkung in Halbleitern:
Von hochkorrelierten koh ärenten Anfangszust änden
zu inkoh ärentem Transport
Reinhold Lövenich
NIC Series Volume 5
ISBN 3-00-006329-3, August 2000, 146 pages

Erkennung von Nichtlinearit äten und
wechselseitigen Abh ängigkeiten in Zeitreihen
Andreas Schmitz
NIC Series Volume 6
ISBN 3-00-007871-1, May 2001, 142 pages

291

Multiparadigm Programming with Object-Oriented Language s -
Proceedings
Kei Davis, Yannis Smaragdakis, Jörg Striegnitz (Editors)
Workshop MPOOL, 18 May 2001, Budapest
NIC Series Volume 7
ISBN 3-00-007968-8, June 2001, 160 pages

Europhysics Conference on Computational Physics -
Book of Abstracts
Friedel Hossfeld, Kurt Binder (Editors)
Conference, 5 - 8 September 2001, Aachen
NIC Series Volume 8
ISBN 3-00-008236-0, September 2001, 500 pages

NIC Symposium 2001 - Proceedings
Horst Rollnik, Dietrich Wolf (Editors)
Symposium, 5 - 6 December 2001, Forschungszentrum Jülich
NIC Series Volume 9
ISBN 3-00-009055-X, May 2002, 514 pages

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms - Lecture Notes
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands
NIC Series Volume 10
ISBN 3-00-009057-6, February 2002, 548 pages

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms- Poster Presentations
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands
NIC Series Volume 11
ISBN 3-00-009058-4, February 2002, 194 pages

Strongly Disordered Quantum Spin Systems in Low Dimensions :
Numerical Study of Spin Chains, Spin Ladders and
Two-Dimensional Systems
Yu-cheng Lin
NIC Series Volume 12
ISBN 3-00-009056-8, May 2002, 146 pages

Multiparadigm Programming with Object-Oriented Language s -
Proceedings
Jörg Striegnitz, Kei Davis, Yannis Smaragdakis (Editors)
Workshop MPOOL 2002, 11 June 2002, Malaga
NIC Series Volume 13

292

ISBN 3-00-009099-1, June 2002, 132 pages

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms - Audio-Visual Lecture Notes
Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands
NIC Series Volume 14
ISBN 3-00-010000-8, November 2002, DVD

Numerical Methods for Limit and Shakedown Analysis
Manfred Staat, Michael Heitzer (Eds.)
NIC Series Volume 15
ISBN 3-00-010001-6, February 2003, 306 pages

Design and Evaluation of a Bandwidth Broker that Provides
Network Quality of Service for Grid Applications
Volker Sander
NIC Series Volume 16
ISBN 3-00-010002-4, February 2003, 208 pages

Automatic Performance Analysis on Parallel Computers with
SMP Nodes
Felix Wolf
NIC Series Volume 17
ISBN 3-00-010003-2, February 2003, 168 pages

Haptisches Rendern zum Einpassen von hochaufgel östen
Molekülstrukturdaten in niedrigaufgel öste
Elektronenmikroskopie-Dichteverteilungen
Stefan Birmanns
NIC Series Volume 18
ISBN 3-00-010004-0, September 2003, 178 pages

Auswirkungen der Virtualisierung auf den IT-Betrieb
Wolfgang Gürich (Editor)
GI Conference, 4 - 5 November 2003, Forschungszentrum Jülich
NIC Series Volume 19
ISBN 3-00-009100-9, October 2003, 126 pages

NIC Symposium 2004
Dietrich Wolf, Gernot Münster, Manfred Kremer (Editors)
Symposium, 17 - 18 February 2004, Forschungszentrum Jülich
NIC Series Volume 20
ISBN 3-00-012372-5, February 2004, 482 pages

293

Measuring Synchronization in Model Systems and
Electroencephalographic Time Series from Epilepsy Patien ts
Thomas Kreutz
NIC Series Volume 21
ISBN 3-00-012373-3, February 2004, 138 pages

Computational Soft Matter: From Synthetic Polymers to Prot eins -
Poster Abstracts
Norbert Attig, Kurt Binder, Helmut Grubmüller, Kurt Kremer (Editors)
Winter School, 29 February - 6 March 2004, Gustav-Stresemann-Institut Bonn
NIC Series Volume 22
ISBN 3-00-012374-1, February 2004, 120 pages

Computational Soft Matter: From Synthetic Polymers to Prot eins -
Lecture Notes
Norbert Attig, Kurt Binder, Helmut Grubmüller, Kurt Kremer (Editors)
Winter School, 29 February - 6 March 2004, Gustav-Stresemann-Institut Bonn
NIC Series Volume 23
ISBN 3-00-012641-4, February 2004, 440 pages

Synchronization and Interdependence Measures and their Ap plications
to the Electroencephalogram of Epilepsy Patients and Clust ering of Data
Alexander Kraskov
NIC Series Volume 24
ISBN 3-00-013619-3, May 2004, 106 pages

High Performance Computing in Chemistry
Johannes Grotendorst (Editor)
Report of the Joint Research Project:
High Performance Computing in Chemistry - HPC-Chem
NIC Series Volume 25
ISBN 3-00-013618-5, December 2004, 160 pages

All volumes are available online at http://www.fz-juelich.de/nic-series/.

294

